Tag Suggestion and Localization in User-generated Videos based on Social Knowledge

Lamberto Ballan, Marco Bertini, Alberto Del Bimbo, Marco Meoni, Giuseppe Serra
Worldwide social websites for media sharing

• Social websites for media sharing have become more and more popular in the last years
 – Flickr hosts more than 2 billion images with ~3 millions new uploads per day
 – YouTube reported in March 2010 more than 2 billion views a day and 24 hours of videos uploaded per minute

• People upload, share and annotate multimedia content with tags
Key problem: social tag reliability

• The performance of social image and video retrieval systems strictly depends on the availability and quality of tags

• But recent studies show that tags are few, imprecise, ambiguous and overly personalized [Kennedy et al. 2006]
 – e.g. a study on 52 million Flickr photos shows that ~64% of them have only 1-3 tags (see [Sigurbjörnsson and van Zwol 2008])

• Moreover tags might be irrelevant to the visual content

Query tag: airplane
• In the case of videos there is also another problem: tags are not “localized” in the video frames

Query tag: **ponte vecchio**
Social image retrieval

• **Query-dependent** methods
 – Goal: given a particular query, try to re-rank the results considering the visual content [Hsu et al.’07, Jing et al.’08]

Query: *airplane*

![Re-ranking images](image1.png)

• **Query-independent** methods
 – Goal: tag relevance learning by estimating the relevance of each tag with respect to the visual content [Li et al.’08 & later, Kennedy et al.’09, Wu et al.’09]

Query: *airplane*

airplane
twin
los angeles
Tag relevance learning by neighbor voting

- Several recent works focus on the *tag relevance learning* approach since it is more general (i.e. it can be used also as a starting point for query-dependent methods)

- An example: estimate tag relevance by exploiting annotations from neighbors users selected by visual similarity [Li et al. ’08,’09]

 - use visual features to describe the content
 - find neighbors by clustering of visual features
 - voting accumulation to learn tag relevance
 - use a multi-feature tag relevance learning to improve results [Li et al. 2010]
Social video retrieval

• The problem of social video retrieval and tag suggestion in user-generated videos has been less explored
 – several works use YouTube’s “related videos” metadata to enrich/re-rank information related to a specific video [Wu et al.’09, Liu et al.’10]
 – other recent works retrieve visual near-duplicates for tag-suggestion and video re-ranking [Siersdorfer et al.’09, Zhao et al.’10]

• New tags are usually suggested at the video level
• To the best of our knowledge there are no previous works that try to locate tags within the user-generated video
Our approach

• We propose an approach for *video tag suggestion* and *temporal localization* based on collective knowledge and visual similarity of video frames

• Our goal is two-fold:
 – exploits tags associated to user-generated videos and images uploaded to social websites (such as YouTube and Flickr) and their visual similarity for tag suggestion at the video level
 – associate the tags to the relevant shots that compose the video
Overview of the proposed system

- **Video tags:** firenze, florence, tuscany, italy, culture, tribute, most beautiful, town, travel, love, art

- **Shot segmentation and Keyframe extraction**

- **Retrieved Flicker images using Video tags and image clustering**

- **Image tags:**
 - Italy
 - old
 - bridge
 - culture
 - art
 - Arno

- **Suggested Tags:**
 - FIRENZE
 - ART
 - FLORENCE
 - ITALY
 - bridge

- **Image tags:**
 - Firenze
 - Florence
 - river
 - bridge
 - Ponte
 - Vecchio
 - Canon 300D

- **Image tags:**
 - Firenze
 - old bridge
 - Florence
 - ponte
 - love
 - art

- **Identification of the nearest cluster and Tag localization**
Exploiting tag relevance for video annotation

From each shot are extracted 3 keyframes (start, middle, end)

\[K = \{ k_1, \ldots, k_o \} \]

Let \(T \) be the union of all the tags of the set of downloaded images \(I \)

\[
I = \{ I_{v_1}, \ldots, I_{v_n} \}
\]

\[
T = \{ t_1, t_2, \ldots, t_k \}
\]

The video tags \(V \) are used to select and download images from Flickr

- Video tags: Florence, Italy, Ponte Vecchio, Duomo, Uffizzi, Europe, ...

\[V = \{ v_1, \ldots, v_n \} \]
• The set T is considered as the dictionary to be used for the video annotation

• Since it is obtained from social images (Flickr) it is fundamental to evaluate the relevance of the terms in the dictionary

 – to this end we followed and extend the approach of [Li et al.'08] to cope with video shot annotation

 – practically tag relevance learning is computed by counting occurrences of each tag t in the kNN images, minus the prior frequency of t

• For all the keyframes in K and images in I is computed a 72-dim visual feature vector representing global information (color and texture)

 – 48-dim color correlogram computed in the HSV color space

 – 6-dim for color moments computed in the RGB color space

 – 18-dim for 3 Tamura features that account for texture information

\[\begin{bmatrix} d_1, \ldots, d_{48}, d_{49}, \ldots, d_{54}, d_{55}, \ldots, d_{72} \end{bmatrix} \]

\[\text{color correlogram, color moments, texture (Tamura)} \]
Images in \(I \) are clustered using k-means and cluster centers are used as an index for ANN-search based on visual similarity to the keyframes in \(K \):

- for each keyframes \(k \) in \(K \) is retrieved the NN cluster center and the images belonging to that clusters are selected as neighbors for \(k \)
- tags related to all these images are associated to keyframe \(k \), resulting in the tag set \(T_k = \{v_1, ..., v_n\} \)
- video tags in \(V \) are kept only if they are present in the visual neighborhood (otherwise they are eliminated from the tag list)
- also the WordNet synonyms of all the tags \(v_i \) are used to download images from Flickr (we download only 1/3 of images with respect to the original term)
• To add new tags to each shot we compute a set of candidate tags computed from the dictionary T

 – for each t in T is computed its tag relevance and resulting rank position rank_i

 – a new tag candidate list C is computed with all the tags c having a co-occurrence value above the average

 – for each c is computed a suggestion score, $\text{score}(c, T_k)$, according to the Vote+ algorithm

 – finally, for each candidate tag c of each keyframe k, is computed the following suggestion score:

\[
\text{score}(c, k) = \text{score}(c, T_k) \cdot \frac{\lambda}{\lambda + (\text{rank}_c - 1)}
\]

 – the score is used to order the tags to be added to the shot (only the five most relevant are used)
Experimental results: dataset

- We evaluate the performance of our approach using a dataset designed to represent the variety of content on YouTube
 - 4 YouTube videos for each YouTube category (1135 shots, 3405 keyframe)
 - all the dataset videos had been previously tagged by YouTube users

- For each YouTube tag our system downloads 15 Flickr images

- In the WordNet query expansion experiment the system downloads 5 additional Flickr images for each WordNet synonym

- Output is shown using SRT subtitles
 - Uppercase: original YouTube tags
 - Lowercase: suggested tags for the shot
Experimental results: types of experiments

- **Shot level Tag Localization (STL)**
 - evaluation of performance of the localization of the user-generated YouTube tags in the correct shots, in terms of accuracy

- **Shot level Tag Suggestion and Localization (STSL)**
 - this measure shows the accuracy of the tag localization at shot level for both user-generated and suggested tags

- **STSL with WordNet query expansion (STSL-WN)**
 - accuracy of STSL with WordNet synset expansion of the YouTube tags that have been kept at the end of localization process
Scene 14: PARK, TERRAIN, LAND, landscape, sky, mountain, scenery, colors
Scene 1: VOLCANO, ERUPTION, EYJAFJALLAJÖKULL, ICELAND, glacier, landscape, volcanic eruption, eldgos, nature
Scene 1: MAID, MIST, NIAGRA, FALLS, scotland, waterfall, trees, crossdresser, tablier
Thank You