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(a) Input scene (b) “Navigation map” (c) HoD and HoS 

Experiments 

Qualitative Examples 

Our Model 

Motivation 

(a) most common paths for two classes   (b,c) corresponding popularity and routing maps 

•  UCLA-courtyard dataset: 6 annotated videos, 1 scene (2 views), single-
class (pedestrian), scene labeled with 8 semantic classes 

•  Stanford-UAV dataset [28]: 21 video, 6 physical areas, 15 different scenes, 
multi-class (we use pedestrian and cyclist), 10 scene labels 

•  Evaluation Metric: Modified Hausdorff Distance (MHD) 

When given a frame of a video, 
humans can not only interpret 
the scene, but also they are 
able to forecast the near future. 
 

This ability is mostly driven by 
their rich prior knowledge about: 
•  dynamics of moving agents 
•  semantic of the scene 

Navigation Map 
Given an input scene we overlay an uniform grid and build a map M which 
collects the navigation statistics for a given target class. 
 

For each patch we encode four type of information: 
•  Popularity score: measures how many times a patch has been explored 
•  Routing score: measures the probability of changing behaviors 
•  Histogram of Directions 
•  Histogram of Speeds 

We exploit the interplay between these two key elements for trajectory 
prediction, and apply knowledge transfer to make predictions on a new scene. 

Prediction Model 
•  The target state is defined by its position and velocity: Xk = (Pk,Vk)T 
•  Starting from a given initial condition X0, our goal is to generate a sequence of 

future states X1,…,XT, i.e. a path ΨT 

•  The dynamic process describing the target motion is defined by: 
(1)   Pk+1= Pk + (Ωk cosΘk; Ωk sinΘk) + wk  (constant velocity model) 
(2)   Vk+1 = Φ(Pk,Vk; M)   (this allows non-linear behaviors) 

•  A Dynamic Bayesian Network exploits M for path prediction 

(a) (b) (c) 

Results: Path Prediction 
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(a) MHD error for a given final destination  (b) Path generation strategies (ours)  

Qualitative results: blue is ground-truth, cyan is LP, yellow is IOC, red is our model  

Results: Knowledge Transfer 

(a) Path prediction 
Num. trajectories

0 100 200 300 400 500

M
H

D
 e

rr
o
r

10

20

30

40 Ours
Ours (transferred)
LP

(b) Impact of training data 
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(a) Input scene (b) Popularity map (c) Routing map (d) Path prediction

Fig. 8. Qualitative results: the first row shows the results obtained in a standard path
forecasting setting, while the second row shows results obtained after knowledge trans-
fer. (a) Shows the input scenes; (b,c) show the navigation heatmaps (popularity and
routing scores, respectively); (c) demonstrates the predicted trajectory.

Some preliminary experiments on knowledge transfer have been presented
also in [2], but they limited their study to a few di↵erent scenes, while we con-
duct an extensive analysis on the Stanford-UAV dataset. By looking at the ex-
amples in Fig. 5, we see that many elements in the scene, such as roundabouts
or grass areas between road intersections, may often appear in similar configura-
tions. Those regularities across the scenes are detected by our semantic context
descriptors, and transferred by our retrieval and patch matching procedure.

Qualitative results. Figure 7 shows a qualitative example of an “halluci-
nated” scene, obtained substituting each patch of the new scene with the most
similar ones from the training set. Increasing the number of nearest-neighborsK,
we can observe more coherent structures. The actual knowledge transfer is done
by computing popularity score, routing score, HoD and HoF, for each trans-
ferred patch (as previously described in Section 4). In Figure 8, we also show a
qualitative example of the results obtained with or without knowledge transfer.

Quantitative results. Here we quantitatively evaluate the knowledge trans-
fer capability of our framework. Therefore we ignore the training trajectories and
functional properties encoded in the navigation map of the target scene, and we
make predictions using data transferred fromK nearest-neighbors retrieved from
the training set. Table 2 shows that our model after knowledge transfer performs
well. As expected, the predictions obtained starting from the transferred maps
are not good as the ones that can be obtained by training from the same scene
(i.e. 14.29±0.84 vs 8.44±0.72). However, we still outperform significantly both the
LP baseline and [2], demonstrating that knowledge transfer can be a key solution
for path forecasting on novel scenes. It is also interesting to note that our perfor-
mance is significantly better especially for the class pedestrian. We believe this
is mainly due to the fact that, in the Stanford-UAV dataset, pedestrians show

Qualitative results: “standard” path prediction (1st row) vs knowledge transfer (2nd row) 

[16] Kitani et al, “IOC”, ECCV 2012  [28] Robicquet et al, ECCV 2016  [37] Yang et al, CVPR 2014    [43] Yamaguchi et al, “SFM”, CVPR 2011       Stanford-UAV dataset: http://cvgl.stanford.edu/projects/uav_data 
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Table 1. (a) Path forecasting results on both datasets; we report the mean MHD error
of the closest path for a given final destination. (b) Shows the results of our method
on the Stanford-UAV dataset, obtained using di↵erent path generation strategies.

MHD error
UCLA-courtyard Stanford-UAV

LP 41.36±0.98 31.29±1.25

LPCA - 21.30±0.80

IOC [16] 14.47±0.77 14.02±1.13

SFM [43] - 12.10±0.60

Ours 10.32±0.51 8.44±0.72

(a) Path forecasting
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(b) Path generation (Ours)

results confirm the e↵ectiveness of our approach even when it is compared to
other methods which take advantage of the interactions between agents.

In Table 1(b) we show some results in which we investigate di↵erent path
generation strategies. In other words, this is the strategy we use in our model to
predict the final path among the most likely ones (see Eq. 10). We obtained the
best results when we privilege a path in which the final point is closest to the
goal, but significant improvements can be obtained also if we peak the path with
the highest popularity scores, or the mean of the top-10 most probable paths.

5.3 Knowledge Transfer

Here we evaluate the ability of our model to generalize and make predictions on
novel scenes. This generalization property is very important since it is hard and
expensive to collect large statistics of agents moving in di↵erent scenes.

Some preliminary experiments on knowledge transfer have been presented
also in [16], but they limited their study to a few di↵erent scenes, while we
conduct an extensive analysis on the Stanford-UAV dataset. By looking at the
examples in Fig. 5, we see that many elements in the scene, such as roundabouts
or grass areas between road intersections, may often appear in similar configura-

(a) Original image (b) K=5 (c) K=10 (d) K=50

Fig. 7. (a) Input scene. (b,c,d) Show the “hallucinated” scene computed using our
patch matching approach. The images are formed by average patches obtained with an
increasing number of neighbors K. We varied the parameter K in the interval [1, 200].
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(a) Input scene (b) Popularity
map

(c) Routing map (d) Path predic-
tion

Fig. 8. The first row shows the results obtained in a standard path forecasting setting,
while the second row shows results obtained after knowledge transfer. (a) Input scenes;
(b,c) popularity and routing heatmaps; (c) demonstrates the predicted trajectory.

tions. Those regularities across the scenes are detected by our semantic context
descriptors, and transferred by our retrieval and patch matching procedure.

Qualitative results. Figure 7 shows a qualitative example of an “halluci-
nated” scene, obtained substituting each patch of the new scene with the most
similar ones from the training set. Increasing the number of nearest-neighborsK,
we can observe more coherent structures. The actual knowledge transfer is done
by computing popularity score, routing score, HoD and HoF, for each trans-
ferred patch (as previously described in Section 4). In Figure 8, we also show a
qualitative example of the results obtained with or without knowledge transfer.

Quantitative results. Here we quantitatively evaluate the knowledge trans-
fer capability of our framework. Therefore we ignore the training trajectories and
functional properties encoded in the navigation map of the target scene, and we
make predictions using data transferred fromK nearest-neighbors retrieved from
the training set. Table 2 shows that our model after knowledge transfer performs

Table 2. (a) Knowledge transfer results on the Stanford-UAV dataset (per-class and
overall error). (b) How performance is influenced by the number of trajectories.

MHD error
Pedestrian Cyclist Overall

LP 34.48 28.09 31.29±1.25

PM 22.75 20.58 21.67±1.19

IOC [16] 17.99 18.84 18.42±0.97

Ours 12.36 16.22 14.29±0.84

(a) Path forecasting
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(b) Impact of training data

ECCV16 

Knowledge Transfer 

(b) Patch retrieval   (a)  local context (3 levels) 
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•  Retrieval-based approach that uses scene similarity to transfer the functional 
properties that have been learned on the training set, to a new scene 

 

•  Scene parsing: we use the scene parsing algorithm in [37]   (based on SIFT + 
LLC, GIST, color histograms and MRF inference to refine the labeling) 

 

•  Semantic Context Descriptors: each descriptor is a weighted concatenation 
of the global and local semantic context components: pi = w gi + (1 − w) li 

(1)   global context: C-dim vector of L2 distances between the centroid of 
the patch and the closest point in the full image labeled as c 

(2)   local context: this is a shape-context like representation which encodes 
the spatial configuration of nearby patches at multiple levels 
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