Motivation

When given a frame of a video,
humans can not only interpret
the scene, but also they are
able to forecast the near future.
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Input scene

« semantic of the scene

We exploit the interplay between these two key elements for trajectory
prediction, and apply knowledge transfer to make predictions on a new scene.

Our Model

Navigation Map

Given an input scene we overlay an uniform grid and build a map M which
collects the navigation statistics for a given target class.

For each patch we encode four type of information:
Popularity score: measures how many times a patch has been explored
Routing score: measures the probability of changing behaviors
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Prediction Model

The target state is defined by its position and velocity: X, = (P,,V,)’

Starting from a given initial condition X,, our goal is to generate a sequence of
future states X,,...,X;, i.e. a path ¥;

The dynamic process describing the target motion is defined by:
(1) Py=P+(Q, cosO,; Q, sin®,) + w, (constant velocity model)
(2) Vi, =P, V,; M) (this allows non-linear behaviors)
« A Dynamic Bayesian Network exploits M for path prediction

Knowledge Transfer

* Retrieval-based approach that uses scene similarity to transfer the functional
properties that have been learned on the training set, to a new scene

Scene parsing: we use the scene parsing algorithm in [37] (based on SIFT +
LLC, GIST, color histograms and MRF inference to refine the labeling)

Semantic Context Descriptors: each descriptor is a weighted concatenation
of the global and local semantic context components: p,=wg; + (1 - w) |,

(1) global context. C-dim vector of L2 distances between the centroid of
the patch and the closest point in the full image labeled as c

(2) local context. this is a shape-context like representation which encodes
the spatial configuration of nearby patches at multiple levels

Qualitative Exa
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Experiments

« UCLA-courtyard dataset: 6 annotated videos, 1 scene (2 views), single-
class (pedestrian), scene labeled with 8 semantic classes

« Stanford-UAV dataset [28]: 21 video, 6 physical areas, 15 different scenes,
multi-class (we use pedestrian and cyclist), 10 scene labels

« Evaluation Metric: Modified Hausdorff Distance (MHD)

Results: Path Prediction
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(a) MHD error for a given final destination  (b) Path generation strategies (ours)

Qualitative results: blue is ground-truth, cyan is LP, yellow is I0C, red is our model

Results: Knowledge Transfer
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(a) Path prediction (b) Impact of training data

Qualitative results: “standard” path prediction (15t row) vs knowledge transfer (2" row)

Stanford-UAV dataset: http://cvagl.stanford.edu/projects/uav data




