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Facoltà di Ingegneria - Dipartimento di Sistemi e Informatica

Tesi di Laurea Specialistica in Ingegneria Informatica

Generazione Automatica di Video Musicali
Automatic Music Video Generation

Candidato
Alessio Bazzica

Relatori
Prof. Alberto Del Bimbo

Prof. Marco Bertini

Correlatori
Ing. Giuseppe Serra

Ing. Lamberto Ballan

Prof. Alan Hanjalic ú

Cynthia C. S. Liem, MSc MMus ú

ú

Anno Accademico 2011-2012



alla mia famiglia
a Iris



“You will learn to lose everything;
we are temporary arrangements.”

Alanis Morissette



Acknowledgments

A substantial part of the thesis work has been carried on in the D-MIR
lab, TU Delft (Delft, The Netherlands) under the supervision of Prof. Alan
Hanjalic and Cynthia C. S. Liem.

The system resulting from this thesis project was a Grand Challenge Fi-
nalist entry at the 20th International Conference of Multimedia.

MuseSync: Standing on the Shoulders of Hollywood
Cynthia C. S. Liem, Alessio Bazzica, Alan Hanjalic

ACM Multimedia 2012 (Nara, Japan)



Contents

1 Introduction 1

2 Audiovisual Cross-Modal Interactions 6
2.1 Previous Works . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Musicological and Psychological Perspective . . . . . . . . . . 9

3 Proposed Approach 13
3.1 Cross-Modal Connotative Associations . . . . . . . . . . . . . 13
3.2 System Design . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.2.1 Story-Driven Soundtrack Pre-Selection . . . . . . . . . 16
3.2.2 Video to Music Synchronization . . . . . . . . . . . . 17

3.3 Novelties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4 Story-Driven Soundtrack Pre-Selection 20
4.1 Associations between Movie Plots, Music and Social Tags . . 20
4.2 Indexing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.2.1 Music Tag to Plots Index . . . . . . . . . . . . . . . . 22
4.2.2 Music Tag to Music Tags Index . . . . . . . . . . . . . 22
4.2.3 Song to Music Metadata Index . . . . . . . . . . . . . 23

4.3 Retrieval . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.4 Pseudo Relevance Feedback -like Step . . . . . . . . . . . . . 25

5 Video to Music Synchronization 27
5.1 Score-based Synchronization Framework . . . . . . . . . . . . 27

5.1.1 Inner Layer - Synchronization . . . . . . . . . . . . . . 29
5.1.2 Outer Layer - Ranking . . . . . . . . . . . . . . . . . . 37

5.2 Intensity Features . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.2.1 Motion Activity . . . . . . . . . . . . . . . . . . . . . 39

i



5.2.2 Audio Novelty . . . . . . . . . . . . . . . . . . . . . . 43
5.2.3 Hybrid Feature: Audio Novelty and Onset Accents . . 46
5.2.4 Motion Attention . . . . . . . . . . . . . . . . . . . . . 49

5.3 Cross-Modal Accents Alignment . . . . . . . . . . . . . . . . 54

6 Towards a Full System Evaluation 57
6.1 What Makes the Evaluation Tricky . . . . . . . . . . . . . . . 57
6.2 Assess each Layer First . . . . . . . . . . . . . . . . . . . . . 58

6.2.1 Music Pre-Selection . . . . . . . . . . . . . . . . . . . 58
6.2.2 Audiovisual Content Analysis . . . . . . . . . . . . . . 59
6.2.3 Audiovisual Synchronization . . . . . . . . . . . . . . 60

6.3 Full System Evaluation . . . . . . . . . . . . . . . . . . . . . 61

7 Conclusions 63

A Lucene - Full-Text Search Engine 65
A.1 Lucene Framework . . . . . . . . . . . . . . . . . . . . . . . . 65
A.2 Indexing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
A.3 Retrieval . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
A.4 Ranked Search . . . . . . . . . . . . . . . . . . . . . . . . . . 67

Bibliography 69

Acknowledgments 72

ii



List of Figures

2.1 Congruence-Associationist Framework . . . . . . . . . . . . . 11

3.1 User Survey Study via Amazon Mechanical Turk . . . . . . . 14

4.1 Soundtrack Pre-Selection, Involved Entities . . . . . . . . . . 20
4.2 Music Pre-Selection . . . . . . . . . . . . . . . . . . . . . . . 24

5.1 Synchronization Framework, Layers . . . . . . . . . . . . . . . 28
5.2 Synchronization Framework, Inner Layer . . . . . . . . . . . . 33
5.3 Example Frames . . . . . . . . . . . . . . . . . . . . . . . . . 42
5.4 Motion Activity . . . . . . . . . . . . . . . . . . . . . . . . . . 42
5.5 Audio Novelty, Similarity Matrix . . . . . . . . . . . . . . . . 44
5.6 Audio Novelty, Gaussian Checkerboard Kernel . . . . . . . . 45
5.7 Audio Novelty, Change Point . . . . . . . . . . . . . . . . . . 46
5.8 Onset Accents . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.9 Hybrid Onset-Novelty Feature, Comparison . . . . . . . . . . 48
5.10 Saliency Detection, Behavior With and Without Camera Mo-

tion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
5.11 Saliency Detection, Tracking . . . . . . . . . . . . . . . . . . 52
5.12 Saliency Detection, Luma Entropy Issue . . . . . . . . . . . . 53
5.13 Motion Attention vs. Motion Activity . . . . . . . . . . . . . 53
5.14 Example of Aligned Streams . . . . . . . . . . . . . . . . . . . 54
5.15 Distribution of the Synchronization Scores . . . . . . . . . . . 55
5.16 Audiovisual Synchronization Pipeline . . . . . . . . . . . . . . 56

A.1 Lucene framework . . . . . . . . . . . . . . . . . . . . . . . . 65
A.2 Indexing with Lucene . . . . . . . . . . . . . . . . . . . . . . 66
A.3 Retrieval with Lucene . . . . . . . . . . . . . . . . . . . . . . 67

iii



List of Algorithms

4.1 Music Tag to Plots Index Builder . . . . . . . . . . . . . . . . 22
4.2 Music Tag to Music Tags Index Builder . . . . . . . . . . . . 23
4.3 Song to Music Metadata Index Builder . . . . . . . . . . . . . 23
5.1 Synchronized Audio Stream . . . . . . . . . . . . . . . . . . . 36
5.2 Synchronized Audio Stream - auxiliary functions . . . . . . . 37
5.3 Synchronization-based Ranking . . . . . . . . . . . . . . . . . 38
5.4 Motion Activity Index . . . . . . . . . . . . . . . . . . . . . . 40

iv



List of Definitions

4.1 Definition (Movies, Soundtracks, Music Tags and Music Repos-
itory) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.2 Definition (Instances Relations) . . . . . . . . . . . . . . . . . 22

5.1 Definition (Synchronization Score) . . . . . . . . . . . . . . . 28
5.2 Definition (Stream) . . . . . . . . . . . . . . . . . . . . . . . . 28
5.3 Definition (Stream Duration) . . . . . . . . . . . . . . . . . . 29
5.4 Definition (1-Dimensional Intensity Feature) . . . . . . . . . . 30
5.5 Definition (Multi-Dimensional Intensity Feature) . . . . . . . 31
5.6 Definition (Auditory Intensity Features Set) . . . . . . . . . . 31
5.7 Definition (Visual Intensity Features Set) . . . . . . . . . . . 31
5.8 Definition (Audiovisual Intensity Feature Pairs Set) . . . . . . 31
5.9 Definition (Cross-Correlation Matrix) . . . . . . . . . . . . . 32
5.10 Definition (Cross-Correlation Vector) . . . . . . . . . . . . . . 32
5.11 Definition (Synchronization Scores Vector) . . . . . . . . . . . 34
5.12 Definition (Spectral Flux) . . . . . . . . . . . . . . . . . . . . 47
5.13 Definition (Motion Attention, Intensity Index) . . . . . . . . 49
5.14 Definition (Motion Attention, Spatial Index) . . . . . . . . . 49
5.15 Definition (Motion Attention, Temporal Index) . . . . . . . . 50
5.16 Definition (Motion Attention Measure) . . . . . . . . . . . . . 51

A.1 Definition (Lucene Scoring Function approximation) . . . . . 68

v



Chapter 1

Introduction

The number of uploaded user-generated videos has been increasing since the
spread of mobile devices with video recording capabilities and high band-
width Internet access. Last figures published on http://www.youtube.com/

t/press_statistics/ state that 72 hours of video are uploaded to YouTube
every minute. This figure includes 3 hours of video which are fed from mo-
bile devices: this means that every day, more than 4000 hours of mobile
videos are uploaded. However, informal videos, usually recorded by mobile
devices, are often not particularly appealing1 to a broad audience. There-
fore, they are unlikely to become popular. A possible solution to overcome
the problem of this lack of appeal could lie in the use of music as a means
to enrich visual content. Like in Hollywood movies, the expressive power of
the music can amplify visual content and can influence the viewer in many
di�erent ways.
In this project music is used for automatic music video generation. It is
an audio component which amplifies the message that the user would wish
to convey. Music as the audio component can even add a message. This
is achieved through a selection of the soundtracks which are related to the
theme of the user’s envisioned final video object (i.e. the realization which
the user has in mind). Music normally has to be aligned with certain sec-
tions in the video. This process is normally described as synchronization of
music with video. The list of appropriate synchronizations which enhance
the impact of the co-occurrences of visual and musical cues is finally used

1“Having qualities that people like, being pleasing or attractive” (from Merriam-
Webster R•).
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to provide the user with a small set of synchronized videos.

On one hand, one can believe that the narrative intent of the user is en-
tirely reflected in the audiovisual signal information. In this case, no extra
information is needed in order to select suitable music and synchronize the
audio and video streams. Thus, a music video generation system can rely on
aesthetic features, semantic analysis (e.g. concept detectors) and semiotic
analysis.
User-generated videos are usually not the same as professional videos in
terms of aesthetic linking between di�erent modalities: this happens due to
the limited quality of the recording devices and the fact that users2 do not
act as movie directors. For example, no plot is written in advance and the
scene is recorded as it is. The user has little knowledge of the rules regarding
audio-visual associations and little knowledge of social conventions. More-
over, every single modality is deficient in strong aesthetic cues for the same
reasons. For example, there may be some background noise in the audio.
The lighting conditions may be inadequate. Thus, even if visual aesthetic
cues are extracted, amplified and employed to find some appropriate music
and to synchronize it with the video, the final music video might not show
a su�cient degree of connections between the two modalities.
Detecting semantic concepts in the video, such as actions or the presence of
objects, is a way of getting a greater insight than the cues obtained through
a pure aesthetic analysis. But without any prior information, each detected
concept is often as relevant as any other and this may lead to the establish-
ment of spurious links between visual and musical concepts. The following
example should illustrate this point even if it involves only the analysis of
the video. Consider a video where the camera panned over an area with a
river and a house. If the intent of the user is to show his childhood home,
extra information is required to grasp that intent. For example, one can
sometimes find hints in the video’s title or while listening to the original
video’s speech: both might be reliable sources to infer that the presence of
the river is less important than the presence of the house.
Finally, imagine another video recording of a child looking at his birthday
cake dotted with candles. The viewer needs no additional information about
the user in order to know that the user has recorded a scene of a birthday

2The user in this chapter is who uploads a user-generated video.
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party. The images of a “child” and a “cake” are su�cient for the viewer to
understand such context. This happens because the “child” and the “cake”
are semiotic signs. Semiotics is the science of signs as carriers of sense. In
semiotics, “sign” is anything which conveys a sense: words, pictures, sounds,
gestures, clothes, etc. Semiotics suggests that signs are related to their
meaning by social conventions, i.e. by a specific cultural context. Therefore,
it might also happen that a user video contains undisputed semiotic signs,
as in the case of the video recording of a birthday party. One can take for
granted that a user has always the intent of amplifying a message. Then, in
the example of the birthday, a party soundtrack would be a suitable choice.
But what if the user intent is to put the focus on the child perusing the cake
so that the child looks like a scary subject? In this case, semiotic analysis
alone is not su�cient to take into account such user intent. Semiotic analysis
could be more suitable when specific audiovisual signs have been thoroughly
chosen in advance, as in the case of advertisements and movies. Such case is
indeed di�erent from user-generated videos which can be defined as a series
of unique events not previously written up.
To summarize, of the three possible analysis strategies, semantic analysis
seems to be the most reliable analysis in the user-generated video context,
but it can lead to inappropriate choices of music due to the absence of prior
information, which causes a visual scene to be ambiguous in terms of inter-
pretation.

Other strategies to make strong connections between music and video should
be considered. The common assumption is that the raw video signal is the
only source of information for that task; but the person who records the
video, what his intent is in telling the story, might reveal curious details
about the content of the video. Insights regarding the story can lie in the
relationship between the user and the elements within the recorded video
(e.g. people, objects, actions). Let us recall the previous examples of videos.
Sometimes the context can be obvious, as in the case of the video recording
of a child looking at the cake. The viewer immediately understands that the
scene that has been recorded is that of a birthday party. Other times, the
subject of the video can also be personally related to the user. For instance,
the subject of the video can be his childhood home. A third possibility
is that a clear message or context emerges from the visual content, e.g. a
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birthday party, but the user ultimately want to tell a completely di�erent
story.
In the two latter examples, asking to upload the video and then to provide
extra information can be useful so that the viewers could easily understand
the user intent. For instance, linking a video with a music song which recalls
the childhood theme could be useful in the first video example: the viewers
can be easily understand that the house in the video is related to the user’s
childhood. Furthermore, receiving some extra information, can help in sit-
uations in which the transcript of a speech and/or the video’s title are not
reliable sources.
What has been said above suggests that an automatic music video genera-
tion system should exploit extra information in order to outperform a system
based on pure semantic analysis. In respect of the previous examples, two
challenging problems can be observed. The first relates to the matching of
the video theme to the music theme. This process can be called thematic
matching. When thematic matching is involved, one focuses on the need to
introduce context to the viewers and eventually, by selecting suitable music,
set their mood. The second problem relates to aligning cues in the mu-
sic to visual cues. When the cues from di�erent modalities are well timed,
the overall e�ect of the music video is enhanced. This process can be called
cross-modal synchronization. It is worth noting that for the former problem,
hints given by the user regarding his intent may play a relevant part, thanks
to their potential power of disambiguation. As far as the second problem
is concerned, a pure semantic analysis alone could extract interesting cues
and work at a fine temporal resolution as required by the synchronization.

The most important thing about what has been said above is making good
thematic connections: these connections enable the viewer to understand
the video better. Without strong connections, only the viewers who have a
close relationship with the user might be able to grasp the deeper meaning
of the video (relying on prior information regarding him). This is supported
by videos watched only by viewers within the user’s circles. And vice versa:
a large number of popular videos appealed to viewers, just because users
added manually an appropriate song. These users could have picked up on
the appropriate soundtrack right at the start of making the music video.
Alternatively, they could have added the felicitous soundtrack after the mu-
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sic video had been made because they found the video without music boring.

On the basis of the ideas outlined above, an automatic music video gen-
eration system has been designed and developed. It has been defined as
a framework within which a number of soundtracks are thematically pre-
selected according to a verbal description of the video provided by the user.
They are then ranked. For the ranking, scores express the degree of syn-
chronization between the temporal development of motion in the video and
novelty in the music track. By providing the top-k ranked items, user can
have a degree of the freedom of choice in selecting one of the highly-scored
well-synchronized music videos.

This thesis is structured as follows. Chapter 2 discusses related works and
presents a series of works on which the proposed approach is grounded;
Chapter 3 illustrates the general system design motivating the choices; Chap-
ter 4 explains how the thematic music pre-selection works; Chapter 5 thor-
oughly presents the audiovisual synchronization framework and the tech-
niques employed to analyze musical and visual contents; Chapter 6 presents
designs for evaluation procedures, both regarding the full system and in-
dividual components. Finally, a conclusions chapter summarizes the con-
tributes of this thesis project.

5



Chapter 2

Audiovisual Cross-Modal
Interactions

In this chapter a series of resources are reported in order to give a background
information about the typical approaches to the audiovisual cross-modal
linking. In the first section, some previous works in which music is aligned
to videos are presented. Then, a musicological and psychological perspective
is given in order to better understand the role of music in music videos.

2.1 Previous Works

The closest work in terms of use case is [6] where home-made videos are
analyzed and an appropriate background music (or BGM) is automatically
selected from a library. The system uses the original audio track to keep
dialogs and narration in the edited video, and employs two probability mod-
els trained with a set of professional movie clips. One is used to model
speech, background music and video co-occurrence, while the other models
transitions between music and speech. The visual content is represented
adopting a set of 500 visual words encoding the frequency of colors in the
Hue-Saturation-Value (HSV) space, and the optical flow magnitudes. A set
of 23 low-level audio features including Mel-Frequency Cepstral Coe�cients
(MFCCs), spectral centroid and tempo is quantized in 32 audio words.
The evaluation consisted of a user study involving 16 subjects who had to
judge the relative quality of the edited video compared to a reference. Two
types of pair have been adopted: in one case the reference was the original
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video without BGM, in the other one the reference was an edited video whose
BGM has been found via a baseline method. The results show that the out-
put provided by their system is often the most appreciated in both cases.
However, the authors state that they would introduce high-level semantics
and scene analysis in future works encouraging to investigate further.

In [17, 8] interesting video segments are automatically selected and aligned
via a rule-based approach with incidental music1 and the speech extracted
from the original audio track. Given a music track and a video, the former
is analyzed finding the strongest onsets and estimating the tempo which is
supposed variable along the time. The video is parsed and then organized
into a hierarchical structure consisting of scenes, shots and sub-shots. In
order to do that, the authors adopt shot detection techniques and define
visual, audio and linguistic attention indexes with sub-shot temporal granu-
larity. The best alignment is finally selected heuristically solving a nonlinear
0-1 integer-programming problem which aims to align shot transitions with
music beats, try to match the motion intensity with the music tempo and
mix speech with music without breaking the sentences.
The authors adopt both an objective and a subjective evaluation, although
the former is not based on a ground truth and seems closer to a validation
procedure. They indeed prove that the system’s behavior is the expected
one looking at the objective function scores.
The authors conclude focusing on two interesting open issues. They first
mention the need of better understanding the extent to which motion in-
tensity, matched with musical tempo, a�ects the perception of the video
content. Even more interesting is the second issue which puts the focus on
the need of having a more semantic meaning. They indeed call this issue
“better semantic storytelling” and express the intention of adopting face de-
tection, annotation and tracking in order to highlight the role of a central
character.

In [18] the following approach is presented in order to automatically add
1“Incidental music is music in a play, television program, radio program, video game,

film or some other form not primarily musical. The term is less frequently applied to
film music, with such music being referred to instead as the film score or soundtrack”
(Wikipedia).
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music to a series of pictures. Given a shot from a movie, the authors mine
associations between frames within the shot and the played soundtrack ana-
lyzing a set of low-level features defined in the MPEG-7 standard. Providing
a series of pictures as input to the system, the authors first cluster them in
groups in order to suggest one music track for each group. For each picture a
rank of similar frames extracted from movies is defined, and the top ranked
frames are mapped to the played songs features through the mined asso-
ciations. The extracted audio features are then used to retrieve the most
suitable song within a library of free music. The authors also present two
di�erent approaches to select one music track for each group of pictures.
The evaluation involved 13 subjects grading the suitability of image and
music content in the produced video through a scale ranging from 1 (“total
miss”) to 5 (“fits very good”). Both the average score and the standard
deviation suggest that the subjects prefer the system output over a random
music track selection.
In [18] the main contribution is again given by the idea of exploiting the
expertise of professional users (in this case movie directors), but the system
only relies on low-level features.

Another related use case is the automatic Music Television Video (MTV)
generation. In [11], given a raw video and a music song, a new MTV is
generated by segmenting the video and the song in clips of fixed length
and inferring the most suitable video clip sequence for the given song. A
probabilistic model, known as “dual-wing harmonium”, is trained with a
large dataset of professional MTV: it combines video and audio features to
produce a latent representation for each pair of video and music clips. Clus-
tering these points in the latent vector space defines groups of similar MTV
clips. The clusters are then used at the prediction stage in order to select
the best video clip for each music song clip.
The visual features span color histograms and structure tensor histograms
encoding the motion (intensity and direction), while the audio feature vector
consists of some temporal and spectral features such as MFCCs and zero-
crossing rate.
In order to assess their system, the authors made a comparison with a
commercial software (MUVEE) both adopting an objective and a subjec-
tive evaluation. The former consists of a measure of similarity between a
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professional MTV and its resynchronized version. Two di�erent similarity
measures show that the MTVs generated with their system are more similar
to the original ones than those generated with MUVEE. The latter involved
five subjects asked to give two scores from 0 to 1 reflecting the extent to
what the video change matches with music beats and how excited users feel
about the video scenes. The results show that MUVEE is slightly better for
the second score and the other way around holds for the first one.
The authors state that the discovered patterns might be not straightforward
to understand, especially when a dominant feature is absent, and that they
would consider lyrics analysis and highlight detection for future works.

Remarks

In all the works presented above expect one, namely [17, 8], it is implicitly
assumed that appealing e�ects can be obtained through the right choice of
association patterns between aesthetic features encoded in the auditory and
visual domain, such as spectral power and color histograms. In that direc-
tion, in [15] it has been shown that a relationship between auditory and
visual domain exists even though neither the audio nor the images possess
semantic content.
In order to extract a more semantic description of the visual content, some
authors make use of motion analysis techniques.
In both cases, association patterns can be learned exploiting movies or pro-
fessional videos, where it is assumed that video and audio track match well.
This approach avoids the encoding of pre-defined rules borrowed from the
field of cinematic production.
Independently of the approach, an important aspect is represented by the
system evaluation: it might be hard to formulate a problem of automatic
music selection in terms of document retrieval; thus classic scores, such as
precision and recall, cannot be applied directly. This is supported by the
fact that all the works mentioned in this section employed a subjective eval-
uation.

2.2 Musicological and Psychological Perspective

Music is employed for storytelling by movie directors and sound designers
combining sight and sound in order to enrapture the audience. A number of

9



functions have been listed and discussed in [13] and more recently reordered
in [19]2. They state that music can:

• emphasize movement or a real sound;

• bring to mind a specific location;

• comment the images (even contradicting them like in the case of a
mellifluous melody for atomic holocaust);

• be the music present in the scene (e.g. a radio in a car);

• express actor’s emotions;

• communicate emotions to the audience;

• represent something known by the audience but not currently part of
the narrative;

• anticipate actions or enhance film’s structure elements like openings
and scene changes.

As it will be shown soon, the way the music is an e�ective mean to achieve
such functions relies on socially established meaning in music and video and
cross-modal interactions between them. Thus, music and video are not just
time sequences of sound and images, but also semiotic signs for concepts
that are not directly related to the audio or video content in these time
sequences. This fact can cause a certain expectation regarding congruent
narrative structures and corresponding video content: such a knowledge
should be helpful to devise a system that automatically generates music
videos.

Music A�ects the Interpretation of Video

In [5], it is argued that associations between musical and visual elements
do not simply add together to produce a composite meaning. This prin-
ciple does not indeed fully explains the interpretation of incongruent con-
tents across di�erent modalities (e.g. happy music with sad video). Then,
the author introduces a multi-level congruence-associationist framework (see

2A web document, where the original contents from [13] have been adapted and re-
sumed, is available in English at http://www.tagg.org/teaching/mmi/filmfunx.html.

10

http://www.tagg.org/teaching/mmi/filmfunx.html


Figure 2.1) which shows how music influences the interpretation of film and
video.

Figure 2.1: Congruence-Associationist Framework

The framework shows a number of elements which are:

• modalities: such as visual content, music and speech;

• surface information: physical information received by the sense organs;

• structure: formal characteristics, style and grammar, holding across
any time period or culture (e.g. motion in visual images);

• meaning: associations brought to mind, feelings, interpretations;

• STM: short term memory, or working memory;

• LTM: long term memory, repository of knowledge gained through life-
long experiences.

In addition to the vertical connections, other interactions across di�erent
modalities may take place. In particular, in the case of structural congruency
of audio and visual materials, i.e. congruent accent patterns across di�erent

11



modalities, the attention will be directed towards the part of the visual
scene that is structurally congruent with the music or the speech. While the
audience is actively engaged in constructing the working narrative, even if
the vision generally predominates over audition, music plays a role directing
attention to certain features in the visual image domain, feeding information
directly in the working narrative and providing associations that establish
inferences in LTM.
In this psychology work, the author states that synchronized music and
visual streams may enhance the perceived match and stimulate unification
of the meaning perceived for the individual modalities. This conclusion is
also shared by the researchers in the multimedia field (e.g. [17], [16]).
Having in mind the definition of LTM, that is the source of inferences and
contexts that an individual actively generates in order to make sense of the
external world known initially through the surface information, its presence
in the framework proves that visual and musical contents cannot be treated
as the only source of information during the interpretation of a multimedia
object. Thus, any approach in which external information is gathered from
the user to describe his mental representation of a music video is justified.
The last remarkable aspect of the aforementioned framework is that it does
not suggest that happy visual content has to be associated with happy music:
this means that any kind of audiovisual link can potentially work.
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Chapter 3

Proposed Approach

In this chapter the system outline is reported focusing on the motivations
behind the design choices. In the first section, a user survey study conducted
as part of this project is presented. Then, recalling what emerged from the
analysis stage of the previous chapter, both the music pre-selection algorithm
and audiovisual synchronization method are presented. In the last section,
the novelties of the proposed approach are remarked.

3.1 Cross-Modal Connotative Associations

Consider the scenario of a layman user looking for music to be used as rein-
forcement or meaning-creating element in a video. It can happen that he has
a result in mind but cannot express the corresponding information with the
right musical vocabulary. However, if the connotative associations between
music and visual narrative are strong enough, music can be characterized
in terms of the envisioned multimedia context (i.e. the final realization con-
sisting of a video and a music song). In [12], through a user survey study
conducted as a crowdsourcing experiment on the Amazon MTurk platform
(see Figure 3.1), it has been shown that strong connotative associations be-
tween music and visual narrative indeed exist.
In every survey, a respondent got assigned a random fragment of production
music, for which associative descriptions were sought, and had to fill-in the
following four parts:

• general questions on characteristics of the music fragments;
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• an imaginary cinematic scene description to which the music fragment
would be a suitable soundtrack;

• a personal episode from the respondent’s life to which the music frag-
ment would be a suitable soundtrack;

• demographic information.

Figure 3.1: User Survey Study via Amazon Mechanical Turk

In order to verify whether music fragments can be realistically recognized
and retrieved based on the description provided by the respondents, an in-
verse task was designed based on responses from the original description
survey. The respondents were provided with a cinematic scene description
and asked to rank and rate three music fragments according to their fit to
the given description. The given descriptions have been obtained from the
initial survey run making minor clean-up changes. Looking at the outcomes,
it is clear that the stimulus music fragments of the first survey are consid-
ered as better fits to the description than the random fragments: this proves
the existence of strong connotative connections between free-form and spon-
taneous description of visual narrative and musical information. Hence, a
music retrieval system does not need music queries to be confined to musi-
cal vocabulary but they can also be constructed in a user-friendly narrative
form.
In the user survey study, insights are also given regarding the way respon-
dents described their stories. In most of the cases, there was a majority
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preference for an event structure class in which events are taken as basic
building blocks of a narrative1. More specifically, four classes of events have
been di�erentiated: states having no internal structure, activities involving
internal change but no endpoint, achievements involving an instantaneous
culmination or endpoint and accomplishments involving a build up period
and then a culmination. These class of events have been employed to de-
scribe episodic changes in correspondence of variations in the musical tex-
ture. Such variations have been reported in a mid-level form which is not
as advanced as musical themes, but not as basic as low-level features like
beat or tempo (e.g. “the parts where there are constant harmonies in the
background need a more quiet scene than the parts where there is only the
beat”). Thus, reasonable approximations for textural changes in music and
salient episodic changes in visual content could be used as a basis for the
audiovisual synchronization.

3.2 System Design

One of the main assumption of this work is that a person capturing a user
generated video has a clear mental image of what he wants to record, but
that the resulting video content on its own only weakly represents this men-
tal image. In order to strengthen the representation and make it truly
enjoyable multimedia, suitable soundtrack music should be found and syn-
chronized for the uploaded video.
The user should not have to describe music to be added in the form of spe-
cialized musical terminology or dedicated song title vocabulary. Instead, a
free-text story-driven approach has been employed, asking users for a textual
plot description and several supporting keywords for their video, after which
the provided user input is automatically compared to cinematographic plot
situations. Folksonomic2 song descriptors that are commonly associated
with existing plot situations are assumed to also be suitable for the given
input video, if the intended story of the video resembles that of the cine-
matic plot. This results in a pre-selection of candidate soundtrack songs

1“A spoken or written account of connected events; a story.” (from WordReference).
2“A folksonomy is a system of classification derived from the practice and method

of collaboratively creating and managing tags to annotate and categorize content; this
practice is also known as collaborative tagging, social classification, social indexing, and
social tagging” (from http://en.wikipedia.org/wiki/Folksonomy).
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built through cross-modal connections which will be referred as story-driven
soundtrack pre-selection.
In the multimedia/content-based retrieval community, the video component
has traditionally been considered as the strongest modality in a multimodal
setting. Audio going with this video component is usually considered to be
subordinate, resulting in the expectation that an added audio component
shall be modified (typically through time warping) in case of a non-perfect
temporal fit to the video. However, in the case of user-generated video,
the video component is not a very strong modality. Therefore, both the
video and music soundtrack streams will be kept in their original forms,
without modifying their internal temporal discourse during the synchro-
nization. Instead, the signal is only shifted by a fixed lag, found through
cross-correlation. In this, audio and video features have been chosen in order
to capture the type of temporal developments mentioned by the user survey
study respondents in [12]. Since videos can have very diverse visual content,
one cannot concentrate on a specific class of visual objects or dedicated con-
cept detectors, but only can consider general descriptors. Furthermore, it
has been assumed that the visual content consists of a single raw shot. This
means that no sudden cuts or cross-fades are present, although fast camera
motions like panning might happen. Again, this assumption is considered
valid because only mobile recorded videos have been considered.
Each pair consisting of a pre-selected music song and the uploaded video
is evaluated assuming that the cross-correlation score gives an accurate as-
sessment of the degree of congruence of video and audio segments. Since
multiple pre-selected soundtracks may fit well to the video content, the sys-
tem returns synchronized results for the three best-scoring soundtracks.

3.2.1 Story-Driven Soundtrack Pre-Selection

When starting the application, a user is asked to enter a short free-text story
description of the video for which he searches a soundtrack, as well as several
tag-like keywords describing the intended “feel” of the video. Subsequently,
a traditional text retrieval approach is employed using length-normalized
TF-IDF measures to score documents based on queries. This is done in
three steps with di�erent document and query types:

• the user story is compared to movie plots in order to retrieve the song
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tags associated to the movie soundtracks;

• the previously retrieved song tags together with the tag-like keywords
are used in an intermediate clean-up stage in which a song tag co-
occurrence index is employed;

• the last retrieved song tag set is finally used to retrieve music in a local
repository looking in the indexed music metadata (genre, instrumen-
tation, associated mood, etc.).

In the next chapter, the indexing and retrieval algorithms employed for the
story-driven soundtrack pre-selection are thoroughly illustrated.

3.2.2 Video to Music Synchronization

After the pre-selection of a number of music songs, the system computes a
synchronization score for each pair given by the uploaded video and a pre-
selected music song. In order to do that, the following features, which are
intended to approximate the changes described by respondents in [12], are
extracted:

• a combination of the signal novelty described in [7] with onset infor-
mation to find significant sound changes that go together with strong
musical accents;

• the motion activity score defined in the MPEG-7 standard [9] reflects
the intensity of action.

Even if not specifically meant for synchronization purposes, both descriptors
are well-founded in literature. They do not rely on training data and they
are relatively light-weight in the computational sense. Furthermore, they
are intended to go beyond aesthetic linking and a pure physical-to-physical
connection as in the case of motion sonification [10]. They are indeed em-
ployed to establish audiovisual events links.
Once these descriptors are extracted, the cross-correlation of them is max-
imized for each music-video pair. This results in having each pair charac-
terized by the synchronization score and the associated best audio lag. By
ranking the scores, the three soundtracks having the highest synchroniza-
tion scores are selected to produce three automatically synchronized videos
which are shown to the user.
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3.3 Novelties

The idea of considering existing cinematic productions as examples for as-
sociating music to video has already been used in most of the related works
[18, 11]. However, in all these approaches, audio and video signal features
were directly associated with each other, thus implicitly assuming that low-
level signal characteristics hold all necessary information for making cross-
modal associations. As shown in the previous sections, this is not a realistic
assumption. Thus, establishing cross-modal thematic connections through
movie plots represents a novelty because it is a more expressive way to con-
nect a video with a song.
The synchronization approaches proposed in the past try to make only
physical-to-physical connections, such as beat to shot boundary or tempo
to motion intensity alignment [17, 6]. In this work, the goal is to reach
an event-to-event connection in order to link more semantic concepts with-
out restricting the range of concepts to a small set. The adopted features
have been chosen to well encode salient events: for instance in the case of
the video analysis they can detect an object which suddenly starts to move
while boundaries between di�erent timbres in the music usually detect dis-
tinguishable parts of a song. Furthermore, the adoption of a crowd sourcing
experiment to forecast the most e�ective features represents a novelty be-
cause most of the mentioned works adopted a large set of common low-level
features without strongly motivating the choices.
The proposed approach has also been compared to the YouTube video edit-
ing panel through which the uploaders can replace the original audio with
a music track from a library of more than 150000 songs. No details are
given about either the synchronization procedure or the type of search, but
the following example suggests that the search takes into account music
metadata only. Using the keywords “relaxed holidays sea sun and fun” the
following music songs are pre-selected adopting the system devised in this
work: Beach Bum, Feelin’ Good, Mirage, Long Road Ahead, Somewhere
Sunny and Blobby Samba. With the YouTube music search engine, no re-
sult is given using the whole query. Using then the sub-query “holidays sun”,
these songs have been retrieved: Holiday In The Sun, Dreams of the Sun
and Day Dreaming. Adding “relaxed” in the query the system cannot re-
trieve songs anymore. Finally, regarding the synchronization capabilities, in
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YouTube there is an option through which only those songs similar in length
to the uploaded video are retrieved: this feature alone is by far di�erent from
the synchronization strategy adopted in this work.
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Chapter 4

Story-Driven Soundtrack
Pre-Selection

In order to make a selection of thematically suitable songs from a music
repository, the user is asked to enter a short free-text story description of
the video for which he searches a soundtrack, as well as several tag-like
keywords describing the intended “feel” of the video. In this chapter the
full story-driven soundtrack pre-selection pipeline is thoroughly explained.
Besides, implementation details are given in which the Lucene text search
engine, which is briefly presented in Appendix A, has been used.

4.1 Associations between Movie Plots, Music and
Social Tags

The link between music to be retrieved and user text entries relies on the
entities shown in Figure 4.1:

Figure 4.1: Soundtrack Pre-Selection, Involved Entities

The Local Music Repository, represented as a set of Music Song elements, is
the only source of music in the system. This means that no external music
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can be employed. Nevertheless, new songs can be added at a second time
if opportunely described by the metadata required by the system. Such
metadata includes the title, a description provided by the author, and other
information such as the genre, the instruments and the feel.
Besides, information regarding movies, plots, soundtracks and textual folk-
sonomic descriptors are used. In this, the Internet Movie Database (IMDb)
archive is the source of information regarding movies. Each movie is de-
scribed by its plot and the list of employed soundtracks. Mapping the
soundtracks in the last.fm social music service, it is possible to obtain a
series of tags added by the users for each soundtrack.
The number of mined movie entries is 80909 but only 12573 have both the
plot description and one or more soundtracks present in the last.fm archive.
In total, 228645 unique song tags were crawled; only retaining those tags
used by at least 100 di�erent last.fm users, a vocabulary of 11616 unique
social music tags has been kept. For the music, a dataset of 1084 songs with
royalty-free production music from three resources1 has been used.

4.2 Indexing

The music pre-selection is based on a series of indexes which are employed
to retrieve music given the user text entries. More in detail, three indexes
have been devised2:

• the Music Tag to Plots index (T2P), used for searching documents
similar to the user plot entry and returning a list of related music
tags;

• the Music Tag to Music Tags index (T2T), a music tag co-occurrence
index used for cleaning up through a step similar to the pseudo rele-
vance feedback;

• the Song to Music Metadata index (S2M), used for retrieving songs in
the local repository related to a series of music tags provided as query
which are compared to the music metadata.

1
http://www.incompetech.com/ (Kevin MacLeod), http://www.danosongs.com/

(Dan-O) and http://derekaudette.ottawaarts.com/ (Derek R. Audette).
2The assigned names follow the naming convention key to indexed content; refer to the

Appendix A for a definition of key and indexed content.

21

http://www.incompetech.com/
http://www.danosongs.com/
http://derekaudette.ottawaarts.com/


In order to present the indexing algorithms, some definitions are first given.

Definition 4.1 (Movies, Soundtracks, Music Tags and Music Repository)
M = set of movies
S

M

= set of all songs used as sound track in any movie in M

T
SM = set of all tags linked to any song in S

M

PM = set of production music (local repository)

The following propositional functions are also given:

Definition 4.2 (Instances Relations)
hasSong(movie, song): true if the song is used as sound track in the movie
hasTag(song, tag): true if the song has the tag

4.2.1 Music Tag to Plots Index

The Music Tag to Plots index contains documents where the key is a music
tag and the indexed content is built concatenating the plots of all movies that
have a soundtrack song with the particular music tag forming the document
key. The index is built through the Algorithm 4.1:

Algorithm 4.1 Music Tag to Plots Index Builder
for each tag œ T

S

do
contents Ω ÿ
for each song œ S

M

| hasTag(song, tag) do
for each movie œ M | hasSong(movie, song) do

contents Ω contents fi movie.plot

end for
end for
index.add(new Document(tag, contents))

end for

4.2.2 Music Tag to Music Tags Index

In order to clean up a series of music song tags, a step similar to pseudo
relevance feedback is achieved through the Music Tag to Music Tags index.
It is a tag co-occurrence search index having once again song tags as keys.
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The indexed content consists of all music song tags that occur together with
the key tag within a song. The Algorithm 4.2 shows how the index is built:

Algorithm 4.2 Music Tag to Music Tags Index Builder
for each song œ S

M

do
tags Ω ÿ
for each tag œ T

SM | hasTag(song, tag) do
tags Ω tags fi tag

end for
for each tag œ tags do

contents Ω tags \ tag

index.add(new Document(tag, contents))
end for

end for

4.2.3 Song to Music Metadata Index

The Song to Music Metadata index is built upon metadata descriptions of
the songs (genre, instrumentation, associated mood, etc.), as entered by the
original song composers. The Algorithm 4.3 details its building procedure:

Algorithm 4.3 Song to Music Metadata Index Builder
for each music œ PM do

contents Ω music.title fi music.genre fi music.subgenre fi
music.instruments fi music.feel fi music.description

genre Ω music.genre fi music.subgenre fi music.instruments
index.add(new Document(music.title, music.file, contents, genre))

end for

In this case, the fields title, file and genre are stored but not indexed, while
the only indexed field is again contents. Each retrieved document corre-
sponds to a song in the local music repository.

4.3 Retrieval

Using the aforementioned indexes, the user entries, namely the plot descrip-
tion and the feel-related keywords, are used to retrieve music as shown in
Figure 4.2:
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Figure 4.2: Music Pre-Selection
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Three steps are necessary in order to retrieve music from the local repository:

1. The free-text user description (the “plot” of the video) is compared to
IMDb plot data via the Music Tag to Plots index: the text entry is
compared to the content of each document in the index and the output
consists of the tags stored as keys in the retrieved documents. This is
done in order to associate similar plot elements to similar correspond-
ing music keywords.

2. Subsequently, the obtained music song tags are cleaned up through
a step similar to pseudo relevance feedback employing the Music Tag
to Music Tags index so that in the end a set of n tags is retrieved as
follows:

• first half set: the list of song tags retrieved from the T2P index
are used to match documents in the T2T index and the top n/2
retrieved keys are collected;

• second half set: the keywords provided by the user (“feel” of the
video) are used to match documents in the T2T index; again the
top n/2 retrieved keys are collected.

3. Finally, the Song to Music Metadata index is used to retrieve songs in
the local repository by providing the song tags from the previous step
as a query.

4.4 Pseudo Relevance Feedback -like Step

During the preliminary experiments, no tag co-occurrence index had been
used and looking at the outcomes, one would say that the thematic con-
nection between the user plot situations and the music is often weak. The
reason for that is the following: some song tags are noisy and may cause a
thematic drift. In order to clean up such tags, the tag co-occurrence index,
namely the Music Tag to Music Tags index, and the pseudo relevance feed-
back technique are combined and used.
On one hand, the tag co-occurrence analysis is used as a basis for finding
similar and conceptually related tags. As stated in [21], this is necessary
when di�erent tags might have been used for the same concept. In this case,
it is di�cult to find all items relevant for a certain tag.
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An alternative approach to the tag co-occurrence analysis would be to map
tags to a thesaurus. But, as it is observed in [4], the vocabulary of folk-
sonomies includes many community-specific terms which do not appear yet
into any lexical resource.
On the other hand, the pseudo relevance feedback is used as criterion for the
automatic selection of relevant tags retrieved from the tag co-occurrence in-
dex. In order to understand the rationale behind this choice, the technique
is briefly explained.
The relevance feedback is a well-known information retrieval technique which
involves the user to refine his query and get rid of irrelevant results. Pro-
viding a query to a search engine, the user receives a first list of retrieved
documents. Some of theme might not be relevant to the user. Thus, a
feedback can be asked in which relevant and non-relevant results are dis-
tinguished. This feedback is then used to retrieve a new set of documents
aiming to maximize the number of those which are relevant. This is achieved
as follows. Queries and documents are represented as points in a vector space
model so that the query can be refined as a linear combination of the original
query, the relevant documents and eventually those which are non-relevant.
The weights determine how far or near the potentially relevant documents
have to be with respect to the original query and the manually marked doc-
uments. The weights are chosen so that the new query is near to those
documents marked as relevant and far from those marked as non-relevant.
In order to automatically obtain a feedback, it can be assumed that the user
would mark the top k retrieved documents as relevant. Thus, using the top
k documents to refine the query leads to a new query as described above.
This technique is known as the pseudo relevance feedback.
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Chapter 5

Video to Music
Synchronization

The Video to Music Synchronization framework is used to synchronize the
uploaded video with the pre-selected soundtracks obtained with the method
shown in Chapter 4. This is achieved by first analyzing a number of fea-
tures in the audio and video streams separately. Following this analysis, the
streams are synchronized. Based on a score expressing the goodness of the
synchronization for every soundtrack to the video, the pre-selected sound-
tracks are ranked. The top-k ranked synchronizations are returned to the
user.
In this chapter, the framework is first presented defining the Best Audio Lag
problem and its solution. Then, the audiovisual analysis techniques are pre-
sented. The last section focuses on the pre-selected soundtracks re-ranking
problem.

5.1 Score-based Synchronization Framework

Two separate problems are tackled in the presented framework as shown in
Figure 5.1. One is nested into the other one. Due to this structure, the
two parts of the framework are referred to as the inner layer and the outer
layer. They are defined as follows:

• inner layer : a pair of audio-video streams have to be synchronized;
in this, a synchronization score is computed; it reflects the degree
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of match, achieved through the synchronization process, between the
streams;

• outer layer : iterating over a set of audio streams, pairs consisting of a
video stream and the current audio stream are considered; each pair
is provided as input to the inner layer; the obtained synchronization
scores are then used to rank the set of audio streams so that the highest
score is attributed to the best aligned audio stream.

Figure 5.1: Synchronization Framework, Layers

The main element of the presented framework is the synchronization score
for which the following definition is given:

Definition 5.1 (Synchronization Score)
The synchronization score is a function of an audiovisual stream pair. It
assesses the extent to which the streams are temporally aligned according
to any set of predefined rules or criteria.

In the next part of this section, the two layers are explained in-depth. Before
that, some shared definitions are given.

Definition 5.2 (Stream)
stream(k) : {1 . . . L} æ D where

• D is the vector space in which stream points lie (e.g. [-1,1] for a mono-
channel audio stream);

• L œ N
>1 is the length of the stream.
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Both the audio and the video streams are defined accordingly to the Def-
inition 5.2. The only di�erence is given by the unit of measurement: a
video stream’s length L

V

is expressed in number of frames, while an audio
stream’s length L

A

is expressed in number of samples.
Finally, in order to express a stream length in seconds, the following defini-
tion is given:

Definition 5.3 (Stream Duration)
Given a stream having length L œ N

>1, its duration in seconds is defined as

stream duration(stream(k)) =
I

L/sample rate if stream(k) is an audio stream
L/frame rate if stream(k) is a video stream

where

• sample rate is the number of audio samples per second;

• frame rate is the number of frames per second (fps).

5.1.1 Inner Layer - Synchronization

In the synchronization problem, the input video stream is treated as an
atomic object. Therefore, no change is made on the video. What changes
is the auditory content which is indeed replaced by a delayed and/or zero
padded version of the input audio stream. The input audio stream can only
be delayed and/or zero padded because no time warping has to be applied.
Thus, neither the video nor the audio are time stretched following the ideas
reported in Section 3.2.
In order to link strong accents across di�erent modalities, it has been decided
to analyze the streams in terms of intensity features. For instance, one could
measure the amount of motion in a scene or the estimated velocity of a visual
object which is tracked along the time. Some examples can also be given for
the audio streams: it can be measured the loudness of an audio segment,
the strength of a timbral change or the intensity of the onsets. All these
intensity features share the following properties:

• they change along the time;

• they are one-dimensional;
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• peaks are associated to strong accents1.

Therefore, limiting the analysis to this particular type of features should not
represent a bottleneck when the task is the alignment of audiovisual accents.
The following definition formalizes what has been said above:

Definition 5.4 (1-Dimensional Intensity Feature)
Row vector s œ F n where

• F = [0 1] or F = RØ0 (respectively with or without normalization);

• n is the length of the stream expressed in number of video frames.

The vector represents a stream along the time.

One may wondering why it has been chosen to express the length of the
vector s in number of video frames even if the Definition 5.4 applies both
to audio and video streams. The most obvious motivation is the following:
the alignment of audio samples to video frames has to be done at the lowest
temporal resolution because there is no method more precise than the lowest
resolution available. Such resolution is always the one of the video2. A more
solid motivation is grounded on psychological knowledge. In [20], the tem-
poral Just-Noticeable Di�erence (JND) of human beings has been measured
through a series of experiments in which respondents had to detect asyn-
chrony in an audiovisual stimulus. The best performance shows that, when
the asynchrony is under the threshold of 50 ms, the subjects perceive the
multi-modal stimulus as synchronous. The video frame frequency usually
ranges between 24 and 30 fps: given that the audio has a by far higher tem-
poral resolution, the video temporal resolution can be safely adopted as the
common resolution because the greatest synchronization error would then
be 1/24 s ¥ 42 ms that is lower than the previously mentioned threshold of
50 ms. It is worth noting that this choice does not deny an analysis of the
two streams at di�erent temporal resolutions; it is just a suitable resolution
to align the two streams.

1“An emphasized detail or area, a small detail in sharp contrast with its surroundings.”
(from Merriam-Webster R•).

2The audio sample rate is always much bigger than the frame rate. For instance, one
can consider a frame rate of 30 fps and an audio sample rate of 44100 Hz. In this case,
the audio has to be delayed and/or padded by a number of samples which is a multiple
integer of 44100/30.
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Each stream can be analyzed from many point of views so that di�erent
types of accent have to be detected. Then, it is useful to extend the 1-
Dimensional Intensity Feature as follows:

Definition 5.5 (Multi-Dimensional Intensity Feature)
Matrix S œ M

m,n

(F ) where

• F = [0 1] or F = RØ0 (respectively with or without normalization);

• n, the number of columns, is the duration of the stream expressed in
number of video frames;

• m, the number of rows, is the number of intensity features extracted
for the considered stream;

• each row si is a 1-dimensional intensity feature vector so that S can
be written as

S =

Q

cca

. . .

si

. . .

R

ddb

The two sets of audio and visual intensity features are defined as follows:

Definition 5.6 (Auditory Intensity Features Set)
Given a set of auditory intensity features, the set A is the set of labels
referring to each feature, e.g. A = {Loudness, Novelty, Onsets}. Mapping
each label to an integer, the set is redefined as follows: A Ω {1, . . . , | A |}.

Definition 5.7 (Visual Intensity Features Set)
Given a set of visual intensity features, the set V is the set of labels refer-
ring to each feature, e.g. F = {Motion Activity, Tracked Item #0 Velocity}.
Mapping each label to an integer, the set is redefined as follows: V Ω
{1, . . . , | V |}.

Having to link accents lying in di�erent streams, it is necessary to specify
which pairs of 1-Dimensional Intensity Features are compared.

Definition 5.8 (Audiovisual Intensity Feature Pairs Set)
The set of audiovisual Intensity Feature pairs is a subset of all the pos-
sible audiovisual Intensity Feature pairs, or P j P = A ◊ V (e.g. P =
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{(Novelty, Motion Activity), (Loudness, Tracked Item #0 Velocity)}, using the
mapping between labels and integers P = {(2, 1), (1, 2)} ).

This last definition is important because, together with the audiovisual ac-
cents comparison method, it formalizes the concept of “temporal alignment
made according to any set of predefined rules or criteria” reported in the
Definition 5.1.

Following the definitions given above, the intensity features comparison
method can be presented. In this work, it has been chosen to rely on a
well-established mathematical operator: synchronization scores are based on
cross-correlation, which is defined as “a measure of similarity of two wave-
forms as a function of a time-lag applied to one of them” (from Wikipedia).
Having to compare | P | audiovisual intensity feature pairs at di�erent time-
lags, the following matrix of cross-correlation scores is defined:

Definition 5.9 (Cross-Correlation Matrix)
Given the Multi-Dimensional Intensity Feature matrices for the audio S

A

and for the video S
V

, the Cross-Correlation Matrix XC œ M
p,nXC (RØ0)

where:

• p is equal to | P |, P is the set defined in the Definition 5.8;

• n
XC

, the number of columns of XC, is defined as 2 ◊ max(n
A

, n
V

) ≠ 1

• n
A

and n
V

are respectively the number of columns of S
A

and S
V

.

then XC can be represented as follows:

XC =

Q

cca

. . .

xck

. . .

R

ddb

where k œ {1 . . . p}.

Each row xck in the cross-correlation matrix XC is referred to as cross-
correlation vector and is defined as follows:

Definition 5.10 (Cross-Correlation Vector)
Given a cross-correlation matrix XC, its rows, called Cross-Correlation Vec-
tors, are defined as:
xck = (. . . , xck

l

, . . . ) where
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• l œ {1 . . . n
XC

} is the column index associated to the lag l ≠ N

• N = max(n
A

, n
V

);

• n
XC

= 2 ◊ N ≠ 1 is the number of meaningful lags;

• and xck

l

is the cross-correlation between the vectors of the k-th pair
(i

k

, j
k

) œ P when the 1D Intensity Feature associated to the audio has
lag equal to l ≠ N , or

xck

l

=
Œÿ

m=≠Œ
sik
m

ú rjk
m+(l≠N)

• sjk is the j
k

-th row of S
V

;

• rik is the i
k

-th row of S
A

;

• i
k

œ A and j
k

œ V .

In summary, the process required to compute the correlation matrix XC is
the following (see Figure 5.2):

Figure 5.2: Synchronization Framework, Inner Layer
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• the audio stream is analyzed extracting the audio intensity features;

– each feature is encoded as a 1-dimensional intensity feature vector
ri;

– all these vectors form the multi-dimensional intensity feature ma-
trix S

A

;

• the video stream is analyzed extracting the audio intensity features;

– each feature is encoded as a 1-dimensional intensity feature vector
sj ;

– all these vectors form the multi-dimensional intensity feature ma-
trix S

V

;

• some pairs of audiovisual intensity features are combined together to
compute the cross-correlation vectors for a set of audio lags ranging
from ≠N + 1 to N ≠ 1 where N = max(n

A

, n
V

);

• all these cross-correlation vectors form the cross-correlation matrix
XC.

In order to align the audio stream to the video stream, a column from
th cross-correlation matrix XC has to be selected. The selected column
corresponds to an exact audio lag value which is then used to align the two
streams. This is achieved reducing the XC matrix to a final row vector of
synchronization scores in which the highest value determines the column, or
the audio lag, to be selected. Such projection of the matrix XC onto a row
vector is defined as follows:

Definition 5.11 (Synchronization Scores Vector)
Row vector w œ RnXC

Ø0 where:

• the element w
l

is associated to the lag l ≠ N ;

• N = max(n
A

, n
V

);

In the particular case in which the matrix XC has only one row, the syn-
chronization scores vector corresponds to XC. This happens when only one
pair of audiovisual intensity features are compared. Otherwise, it is neces-
sary to combine the comparisons in order to reduce XC to a row vector.
Some examples are given:
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• average score, each value in w corresponds to the mean of the values
in the correspondent column of XC:

w
l

= 1
| P |

|P |ÿ

k=1
xck

l

• max score, each value in w corresponds to the biggest value in the
correspondent column of XC:

w
l

= max
k

xck

l

In this work, the idea to integrate more than a single audiovisual intensity
feature pair has not been investigated further. It has been left for future
developments3. Nevertheless, projecting the cross-correlation matrix XC
onto a synchronization scores vector according to a set of predefined rules
or criteria, the best synchronization can always be found. Thus, at this
point it is assumed that:

• either XC has only one row, i.e. the synchronization scores vector
w = XC;

• or XC has been somehow projected onto the synchronization scores
vector w;

Once the synchronization scores vector is computed, it is possible to find
the best audio lag:

Problem 5.1 (Best Synchronization)
Given a pair of audiovisual streams, the best audio lag is given by:

lú
fps

= ≠N + arg max
lœ{1...(2◊N≠1)}

w
l

where lú
fps

is expressed in number of video frames and can be converted in
number of audio samples as follows:

best audio lag =
sample rate ◊ lú

fps

frame rate
3The author is sorry for those who really were so brave to read everything up to

this point and, by any chance, also found the multi-dimensional intensity features topic
interesting.
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This formulation of the best synchronization problem leads to an optimiza-
tion problem which has a finite feasible set whose size increases linearly with
the duration of the longest stream. For instance, given a video of 4 minutes
at 30 fps and a music track of 5 minutes, the visual and auditory intensity
feature vectors lengths are respectively 7200 and 9000 video frames; then
the feasible set for l is {≠9000 · · · + 9000}.
Given the audio and video streams and the best audio lag, a new audio
stream having the same stream duration of the video is created through the
Algorithm 5.1. This will be merged with the video stream replacing any
existing audio content.

Algorithm 5.1 Synchronized Audio Stream
audio(k) Ω audio stream to be synchronized Û read the input
video(k) Ω video stream to be synchronized
lag Ω best audio lag (in seconds)

d
A

Ω stream duration(audio(k)) Û get duration
d

V

Ω stream duration(video(k))

clip
from

Ω max(0, lag ≠ d
A

) Û extract the clip from audio(k)
clip

to

Ω min(d
A

, d
V

≠ lag)
audioÕ(k) Ω extract(audio(k), clip

from

, clip
to

)

pad
left

Ω ≠lag Û left zero padding
if pad

left

> 0 then
audioÕ(k) Ω merge(zero padding(pad

left

), audioÕ(k))
end if
pad

right

Ω d
V

≠ stream duration(audioÕ(k)) Û right zero padding
if pad

right

> 0 then
audioÕ(k) Ω merge(audioÕ(k), zero padding(pad

right

))
end if

create an empty video object
assign video(k) as video stream
assign audioÕ(k) as audio stream
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The Algorithm 5.1 makes use of a number of auxiliary functions; they are
defined in the algorithm block 5.2.

Algorithm 5.2 Synchronized Audio Stream - auxiliary functions
function extract(audio(k), from, to)

from Ω from ◊ sample rate, to Ω to ◊ sample rate
create a new empty audio stream audioÕ(k)
append the audio samples from audio(k) with k œ {from . . . to}
return audioÕ(k)

end function

function merge(audio1(k), audio2(k))
create a new empty audio stream audioÕ(k)
append the samples in audio1(k) to audioÕ(k)
append the samples in audio2(k) to audioÕ(k)
return audioÕ(k)

end function

function zero padding(n)
create a new empty audio stream audio(k)
append n samples set to zero in audio(k)
return audio(k)

end function

5.1.2 Outer Layer - Ranking

Given an input video and a set of music songs, each audiovisual stream pair
is provided as input to the inner layer. For each pair, the output consisting
of a best audio lag and a synchronization score is collected. Ranking the
music songs by the obtained synchronization scores defines a ranked list.
From this list, the top-k corresponding music songs are used to make k new
music videos through the Algorithm 5.1.
In this framework, the synchronization scores are not normalized at all. For
example, one may consider to apply a temporal length normalization. In
that case, normalizing by the video stream duration has no e�ect because
the top-k soundtracks will remain the same (the same normalization factor
is applied to all the scores). Such normalization would instead be useful
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if one needs to compare the synchronization scores of audiovisual pairs in
which the video component is di�erent.
The Algorithm 5.3 summarizes what has been said above:

Algorithm 5.3 Synchronization-based Ranking
video(k) Ω video stream to be synchronized
AS Ω set of audio streams audio(k)
R Ω init collection
for each audio(k) œ AS do

(best audio lag, sync score, video) Ω inner layer(video(k), audio(k))
key Ω audio(k)
entry Ω (best audio lag, sync score, video)
R.insert(key, entry)

end for
sort R by key

return R.top(3)

5.2 Intensity Features

When a user watches a video, his attention level is not always constant. Ex-
cluding external factors, such as the presence of a disturbing environmental
noise, the attention level can be a�ected by the audiovisual content and the
user himself. On one hand, certain features do sometimes cause watchers
to orient automatically (e.g. a sudden loud noise, a rapid movement). How-
ever, many features that attract or hold attention of users are informative,
signaling content that users are likely to find relevant or entertaining.
When no prior information is available telling what a large audience might
find relevant or entertaining, one could seek for a set of general audiovisual
features. For instance, in the visual domain rapid movement is quite gen-
eral in order to span the following events: a car chase, a cat fighting with
another one, a camera which pans in order to change subject. While in the
music domain, one could detect loudness peaks, onsets or timbral changes
(as emerged from the user study in [12]). These musical features are often
adopted in film music to attract users’ attention.
On the other hand, a source of information could be exploited to focus on
specific parts of the audiovisual content. For instance, the person who up-
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loads could select through a bounding box a visual item to be tracked along
the time. Its estimated velocity can then be read as an intensity feature.
Similarly, the user could also highlight a small part in the music which he
finds relevant. Through audio similarity techniques, other occurrences of
the highlighted section can be sought so that the computed intensity fea-
ture shows high values when it is likely to find similar segments.
As a first attempt to align audiovisual accents, it has been decided to focus
on the first case. The reason is that the approach is simpler than the second
and previous works in that direction exist [10, 16].
Finally, it is remarked the role of the intensity features. They should well
encode when and to what extent a relevant feature occurs. In this case,
they can be exploited to align accents across di�erent modalities so that the
perceived cross-modal match is enhanced.

5.2.1 Motion Activity

In order to capture sudden events in the visual content without restricting to
a limited set of real world objects, it has been chosen to assess the suitability
of the MPEG-7 motion activity descriptor presented in [9]. As the authors
state, it encodes the overall activity, or pace of motion, which often denotes
the level of action. What makes this descriptor definitively interesting is its
implementation. Instead of estimating motion with computer vision tech-
niques, it exploits the information regarding motion already available in the
video compressed domain, namely the MPEG motion vector field. Even if
MPEG motion vectors have been devised to reach a good video stream com-
pression, the user study in [9] shows that such vectors revealed to be also
suitable in the estimation of the motion activity descriptor. This allows to
drastically reduce the required computation resources and even devise online
algorithms.

Implementation

The motion activity descriptor is computed for each frame considering the
magnitudes of the motion vectors. More precisely, the standard deviation
of the magnitudes is computed. Due to the absence of a public available
implementation, in this work the descriptor has been implemented as follows:
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• the descriptor is computed for each P-frame4 by the Algorithm 5.4;

• it might be necessary to skip some frames, in this case an illegal value
is assigned;

• illegal values for skipped frames are then replaced looking at neigh-
borhood values in order to avoid false falls to zero;

• thresholding and normalization according to the outcomes reported in
[9] are applied;

• a median filter is finally used to get rid of spurious spikes.

Algorithm 5.4 Motion Activity Index
for each frame œ video(k) do

magnitudes Ω ÿ
for each v œ frame.MVF do

m = sqrt(v.dx2 + v.dy2)
magnitudes Ω magnitudes fi m

end for
end for
descriptor = stddev(magnitudes)

As stated above, the computation of some frames is skipped. This happens
when a frame is not a P-frame or when a duplicated frame occurs. The latter
case may happen for two reasons. Sometimes the video is temporally edited
by duplicating frames or audio samples so that music and video are well
timed together. A transcoding in which the frame rate has changed may also
generate duplicated frames as a temporal adaptation artifact. Both cases
lead to an absence of motion in the first duplicated frame dragging down
the descriptor to zero. But when there is an isolated duplicated frame, the
user will not perceive the absence of motion in a scene. Thus, the descriptor
should reflect what the user perceives. However, there is another possibility:
the action suddenly stops so that a frame is replicated many times. In this

4P-frame is an abbreviation for Predicted-frame. They exist to improve compression
by exploiting the temporal (over time) redundancy in a video. P-frames store only the
di�erence in image from the frame (either an I-frame or P-frame) immediately preceding
it (from Wikipedia).

40



case the user perceives absence of motion. Therefore, the descriptor should
distinguish true absence of motion from single duplicated frames. This has
been done skipping only the first duplicated frames so that a long series of
duplicated frames is not skipped and a zero valued descriptor is returned.
In [9] a quantization step has been considered in order to compare the de-
scriptor values with a ground truth obtained through a user study. Even
if in this work a real valued feature is sought, it turned to be useful the
threshold for the highest activity value. It has been used to limit the stan-
dard deviation values up to that threshold. This also enable to normalize
the descriptor in the [0, 1] range.
The final consideration regards the requirements for the videos to be ana-
lyzed. In order to make use of the quantization threshold reported in [9],
it is required that the input compressed video stream adopts the MPEG-1
codec and that the frame size is 352 ◊ 288. However, if one needs to extract
the motion activity index from a video having a di�erent codec or di�erent
resolution, the threshold can be linearly scaled. The only problem, for which
a solution is not given in [9], occurs when a codec employs macroblocks with
di�erent sizes. In this case, it should be investigated first whether the values
extracted from a MPEG-1 transcoded copy of the video resemble the values
extracted from the original one in which every type of blocks is analyzed.
If the values are not too di�erent for a large set of videos, then the results
given in the user study in [9] could be considered still valid.

Examples

Consider the sequences of frames in Figure 5.3. One should expect that in
the frame interval 583-585 the descriptor presents values just above the zero.
Then, when the black cat suddenly attacks the other one, the descriptor
should peak. Finally, in the last group of frames, the action is slower than
the previous one but not quite as the first; thus the value has to be neither
0 nor 1. This expectation is met as shown in Figure 5.4.
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(a) frame 583 (b) frame 584 (c) frame 585

(d) frame 592 (e) frame 593 (f) frame 594

(g) frame 606 (h) frame 607 (i) frame 608

Figure 5.3: Example Frames

Figure 5.4: Motion Activity
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5.2.2 Audio Novelty

As reported in [3], many musicological findings suggest that some time seg-
ments of audio may be more salient than others when making similarity
judgments. The temporal salience is the perceptual importance attached to
a particular time segment of audio. It can be estimated as a function of the
spectro-temporal features. This information can be then incorporated into
audio similarity measures and increase their correlation with human similar-
ity when comparing relatively similar audio objects. The authors of [3] also
report that three factors are usually associated to the salience: loudness,
temporal proximity to onsets5 and novelty.
Loud sounds are more likely to signal danger. Besides, humans place im-
portance on the attack6 when performing instrument identification and in-
strument similarity tasks. As for the latter, humans react and involuntarily
attend to sounds that are novel more than the sounds that are not, where
novelty refers to when the sound stimulus is “new or relatively rare in rela-
tion to the recent history of stimulation”.
Among the aforementioned factors, novelty is the most suitable concept to
delineate the way respondents in [12] described variations in the musical tex-
ture. For this motivation, it has been decided to devise an audio intensity
feature using the audio novelty.
In [3] two di�erent methods of estimating the novelty have been compared:
the first is referred to as the Foote’s novelty measure [7], while the second
has been devised by the authors. It has been decided to adopt the first
method because it is well-known and there is a public available implemen-
tation in the MIR Toolbox library.
The main idea behind the method described in [7] is to devise a function
which peaks when there is a region with high self-similarity transitioning to
a dissimilar region with high self-similarity. At such peaks, a listener would
not expect a dissimilar region. Such function is computed as follows.
The first step is the computation of a self-similarity matrix like the one
shown in Figure 5.5. This can be achieved through the following operations:

5Onsets are often associated to “transient” regions in the signal, a notion that leads to
many definitions: a sudden burst of energy, a change in the short-time spectrum of the
signal or in the statistical properties, etc. (from [1]).

6The attack of the note is the time interval during which the amplitude envelope
increases (from [1]).

43



• the audio stream is segmented in overlapping frames for a short-time
analysis in the frequency domain:

– sampling rate 44.1 kHz;

– frame size of 1024 samples ( 23 ms);

– step size of 256 samples (25% overlap);

– a Hanning window is applied;

• a constant-Q magnitude spectrogram [2] is computed for each frame
so that a vector v

i

is used as a representation of the i-th frame;

• each pair of frames represented as v
i

and v
j

is compared through a
measure of (dis)similarity, such as the cosine distance:

D
C

(i, j) = v
i

• v
j

Î v
i

ÎÎ v
j

Î

• the similarity matrix S is built so that the (i, j) element is D
C

(i, j).

Figure 5.5: Audio Novelty, Similarity Matrix

Given that the cosine distance is symmetric, the similarity matrix S will
also be symmetric. Furthermore, the elements on the diagonal are self-
similarities measures; thus the associated value is always 1, which is the
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cosine between two identical vectors.
Given a self-similarity matrix S, the novelty curve is computed by traversing
the diagonal of S and considering a square sub-matrix SÕ

W

centered on the
current diagonal element. The index W in SÕ

W

denotes the size of the sub-
matrix. It is expressed in number of frames.
When the current frame of S lies between two dissimilar regions with high
self-similarity, then the sub-matrix SÕ

W

has a particular aspect. Imagine SÕ
W

divided in four quadrants. Then, the first and the third quadrants will be
bright, while the second and the fourth will be dark. In this, brightness is
associated to cosine distance values near to 1, darkness is instead associated
to values near to ≠1. This means that:

• the W/2 frames just before the current one are similar between them-
selves;

• the W/2 frames just after the current one are similar between them-
selves;

• the two sets of W/2 frames are dissimilar.

Thus, in order to measure to what extent a frame holds the aforementioned
properties, the correlation between the sub-matrix SÕ

W

and a kernel is com-
puted. The kernel is devised so that the maximum value of correlation is
reached when the three properties listed above are fully observed. Further-
more, smoothing is applied in order to avoid edge e�ects. In [7], it has been
proposed the Gaussian Checkerboard Kernel which is shown in Figure 5.6.

Figure 5.6: Audio Novelty, Gaussian Checkerboard Kernel

The parameter W , namely the width of the kernel, is important in order
to detect changes at di�erent time scales. Small kernels detect novelty on
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a short time scale. Larger kernels average over short-time novelty, such
as notes, and detect longer-term structure. In order to detect significant
changes in the audio, it has been chosen to use a large kernel, namely the
number of frames within a segment of one second. When peaks in the nov-
elty function have to be associated to salient musical events, a large kernel
is useful to reduce the number of false positives.
In summary, the computation process described above is exemplified in Fig-
ure 5.7:

Figure 5.7: Audio Novelty, Change Point

5.2.3 Hybrid Feature: Audio Novelty and Onset Accents

A suitable feature approximating auditory intensity for the purposes of this
project was proposed in [7], in which peaks in the audio novelty are used
to segment an audio stream and to align video clips to the extracted audio
segments. In doing this, the temporal dimension is analyzed to find bound-
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aries in the audio stream, that is determining when a salient change occurs.
Besides, the novelty amplitude dimension is used to select the highest peaks
as the most important boundaries.
Apart from the time, accuracy in the amplitude dimension also is of rele-
vance for the synchronization purposes. In order to ensure that the overall
degree of synchronization match perceived by viewers is high, the novelty
curve is combined with onset intensity information, which can be seen as a
salience measure for occurring musical note events.
Before describing how the audio novelty is combined with onsets, the onset
accents intensity feature is presented.

Onset Accents

The onset denotes the temporal instant in which the transient audio segment
associated with the beginning of a note starts. It is commonly used in order
to estimate the tempo in a music piece or to track the beat along the time.
In [1], a series of techniques to detect onsets are presented. A possible choice
is to measure changes in the spectrum along the time. Sudden changes are
often associated to onsets. More in detail, one can adopt the spectral flux
measure which is defined as follows:

Definition 5.12 (Spectral Flux)
Given two consecutive frames at time n ≠ 1 and n and their spectral repre-
sentations X

k

(n ≠ 1) and X
k

(n), the spectral flux is defined as:

SF (n) =
N
2 ≠1ÿ

≠ N
2

[H(| X
k

(n) | ≠ | X
k

(n ≠ 1) |)]2

where H(x) = (x+ | x |)/2, i.e. zero for negative argument so that only
those frequencies where there is an increase in energy are considered.

The time instants in which SF (n) peaks are denoted as onsets. It is worth
noting that the function SF (n) does not only encode when an onset occurs.
It also measures the extent to what an onset is relevant as the norm of a
spectral power di�erence. This makes the spectral flux function a suitable
intensity feature.
In Figure 5.8, an example of the onset accents intensity feature is shown.
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Figure 5.8: Onset Accents

Hybrid Onset-Novelty

The novelty curve is used first to find salient transitions (based on the am-
plitude, which will make sure that only peaks remain). Then, the novelty
peaks are used as a mask for the onset accents function as follows:

• a new vector having the same size of the audio novelty vector is ini-
tialized;

• this vector is filled with a series of triangular windows:

– placed in correspondence to a peak in the novelty vector;

– the width is 0.3 s;

– the amplitude is 1.

Such vector is finally multiplied element-by-element with the onset accents
vector giving rise to the hybrid onset-novelty intensity feature. Combining
this, salient sound changes (peaks from the novelty curve) at a salient musi-
cal event (strong note starts from the onset accent curve) will be reflected in
the hybrid feature vector. In Figure 5.9, both the audio novelty, the onset
accents and the hybrid intensity features are compared.

Figure 5.9: Hybrid Onset-Novelty Feature, Comparison
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5.2.4 Motion Attention

In this section, a second experimental intensity feature for the visual stream
analysis is presented. It has not been used for the audiovisual synchroniza-
tion, but it should be investigated further for future developments. Thus, a
description is given and some results are shown.
The Motion Activity descriptor presented in the Section 5.2.1 is not grounded
on semantic analysis. Therefore, when salient events are sought, the descrip-
tor is likely to su�er from false-positives and false-negatives. Unfortunately,
no public ground truth had been found to thoroughly assess the Motion
Activity as a salient event detector. Thus, it had been decided to look for
a more semantic oriented descriptor in which the focus is put on moving
objects. This would be subjectively compared to the Motion Activity.

Modeling the Motion Attention

In [14], the MPEG motion vector fields are again employed in order to devise
a video skimming solution. Analyzing the motion, highlights are extracted
from a video. In this, a motion attention measure and a saliency map are
computed.
The main assumption in [14] is that the motion vector field has three types
of inductor :

• intensity: motion energy, or activity;

• spatial coherence: spatial phase consistency of motion vectors within
a spatial window;

• temporal coherence: temporal phase consistency of motion vectors
within a temporal sliding window.

These inductors are mapped to values to be computed for each MPEG block
(i, j) and each frame as detailed in the Definitions 5.13, 5.14 and 5.15.

Definition 5.13 (Motion Attention, Intensity Index)

Intensity(i, j) =

Ò
dx2

i,j

+ dy2
i,j

max Intensity(i, j)
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Definition 5.14 (Motion Attention, Spatial Index)

Spatial Coherence(i, j) = ≠
nÿ

t=1
p

S

(t) log(p
S

(t))

where

• p
S

(t) is a probability distribution function defined as

p
S

(t) = SHw

i,j

(t)/
nÿ

k=1
SHw

i,h

(k)

• SHw

i,j

(t) is the spatial phase histogram whose probability distribution
function is p

S

(t);

• n is the number of bins in the spatial phase histogram;

• w is the number of blocks determining the size of the w ◊ w spatial
window.

Definition 5.15 (Motion Attention, Temporal Index)

Temporal Coherence(i, j) = ≠
nÿ

t=1
p

T

(t) log(p
T

(t))

where

• p
T

(t) is a probability distribution function defined as

p
T

(t) = THL

i,j

(t)/
nÿ

k=1
THL

i,h

(k)

• THw

i,j

(t) is the temporal phase histogram whose probability distribu-
tion function is p

T

(t);

• n is the number of bins in the temporal phase histogram;

• L is the size of the temporal sliding window.

In order to devise a measure of motion attention for each MPEG block, the
following relationships between motion vectors and attended motions have
been reported in [14]:

• the camera motion is able to give rise to high intensity, which is not
the interest of human yet;
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• the spatial phase consistency provides two cues:

– phase of motion vectors in moving object tend to be consistent;

– disordered phases and large magnitudes implies unreliable infor-
mation;

• camera motion is always more stable than object motion during a
longer time.

Therefore, the overall motion attention of each block in a frame is then
computed as follows:

Definition 5.16 (Motion Attention Measure)

Motion Attention(i, j) = Intensity(i, j)◊
Temporal Coherence(i, j)◊
(1 ≠ Intensity(i, j) ◊ Spatial Coherence(i, j))

The values computed through the Definition 5.16 are then used to detect
regions of motion attention through the following image processing methods:

• histogram balance and median filtering;

• binarization, a threshold is used to decide whether a block is salient;

• region growing and selection.

Finally, given a set of salient regions, an index of motion attention is com-
puted as the average intensity of the blocks belonging to the regions. The
series of motion attention indexes is used as an intensity feature to describe
a video stream along the time dimension.

Examples and Implementation Details

In the following examples, some video frames are shown. The MPEG motion
vectors and the salient blocks are also shown. The latter, are highlighted
with a white border.
The set of frames in Figure 5.10 shows that the method described in [14]
e�ectively get rid of camera motion:
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(a) frame 32 (b) frame 48 (c) frame 738

Figure 5.10: Saliency Detection, Behavior With and Without Camera Mo-
tion

The sequence in the Figure 5.11 proves that the method implicitly has track-
ing capabilities:

(a) frame 60 (b) frame 69 (c) frame 70

Figure 5.11: Saliency Detection, Tracking

The following example is reported in order to illustrate a problem to be
tackled in the future. During the implementation of the Motion Attention
descriptor, it has been assessed each intermediate result contributing to
the final index computation. This has been useful in order to tune the
parameters, such as the number of bins of the phase histograms and the
sizes for the spatial and the temporal windows. Besides, the behavior of the
descriptor has been tested on videos containing di�erent motion patterns
(e.g. pure camera motion, pure object motion, or both).
Looking at the outcomes, it has been decided to add a new factor in the
Definition 5.16. This additional factor measures the entropy of the MPEG
luma values within a block. Those blocks which contain interest points7 are

7An interest point is a point in an image which has a well-defined position and can
be robustly detected. It can be a corner, an isolated point of local intensity maximum
or minimum, line endings, or a point on a curve where the curvature is locally maximal
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likely to score high in terms of luma entropy.
Unfortunately, this method presents a drawback: when a block has a single
luma value, the overall score is zero even if the block belongs to a moving
object. However, from a subjective evaluation conducted by the author
on a small set of videos, the aforementioned factor seemed to be globally
beneficial: the precision increased while the recall slightly decreased. In
Figure 5.12, a set of frames extracted from the same scene shows a black
cat running. As anticipated, only those blocks with high luma entropy are
detected as salient.

(a) frame 587 (b) frame 615 (c) frame 669

Figure 5.12: Saliency Detection, Luma Entropy Issue

The plot shown in Figure 5.13 is reported to motivate why the Motion
Activity descriptor has been preferred over the Motion Attention. Both
descriptors have been extracted as intensity features and plotted together.

Figure 5.13: Motion Attention vs. Motion Activity

Recalling the example given in the Figure 5.3, one should notice that the
most important peak at the frame 593 is not detected by the Motion Atten-
(from Wikipedia).
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tion descriptor. The lack of recall may lead to weak audiovisual links, thus
it has been decided to conduct the first synchronization experiments using
the Motion Activity descriptor.
Finally, to implement the Motion Attention descriptor a first duplicate frame
detector has been again employed as discussed in the section 5.2.1 for the
Motion Attention descriptor.

5.3 Cross-Modal Accents Alignment

Up to this point, both the audiovisual synchronization framework and audio-
visual intensity features have been presented. In this section, it is shown the
architecture of a working system which employs the aforementioned compo-
nents.
The following intensity features have been selected: the motion activity fea-
ture for the visual analysis and the hybrid onset-novelty feature for the audio
analysis. When the system is deployed, a local repository of production mu-
sic has to be built. Each item in such collection consists of a compressed
audio file (mp3 format) and a data file containing the values of the hybrid
onset-novelty intensity feature vector. Having a local repository of music
enables to compute the auditory intensity features in advance so that the
time required to answer to a user is reduced.
In Figure 5.14, the visual intensity features aligned to the lagged auditory
intensity feature are shown. In this example, it is evident that the highest
peaks in both modalities are well aligned.

Figure 5.14: Example of Aligned Streams
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One may wonder whether the synchronization scores can well discriminate
strong and weak alignments. Let us assume that the synchronization score
reflects the perceived synchronization match of human subjects. Then, con-
sider an audiovisual pair and compute the synchronization scores vector w.
Plotting the frequencies of the values in w, a histogram like the one in Fig-
ure 5.15 is obtained. The best synchronization score always lies in the right
most bin. When the other scores are concentrated in a group of consecu-
tive bins and this group is far from the right most bin, then one can infer
that the discrimination power is high. Otherwise, if many synchronization
scores are concentrated in the right most bins, it can happen that a large
group of possible alignments are perceived as equivalent. For instance, this
happen when an intensity feature contains a periodic series of peaks whose
frequency is high.

Figure 5.15: Distribution of the Synchronization Scores

The full synchronization pipeline is shown in Figure 5.16.
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Figure 5.16: Audiovisual Synchronization Pipeline
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Chapter 6

Towards a Full System
Evaluation

This thesis project includes all the activities described in the previous chap-
ters, namely the analysis stage, the system design and its implementation.
In this chapter, a design for a full system evaluation is outlined.

6.1 What Makes the Evaluation Tricky

The problem of automatically generating music videos cannot be formu-
lated as a classical information retrieval (IR) problem in which documents
are retrieved given a query. Therefore, well-known IR measures such as the
precision, the recall or the F-measure cannot be directly used. Similarly,
comparing the system output to a ground truth might not be straightfor-
ward.
Apart from adopting objective evaluation methods, subjective assessments
can also be considered. In all of the works mentioned in Section 2.1, such
kind of assessment has been used. In this, the authors had to accurately
setup their surveys. For instance, the system output is compared to one or
more reference objects which can be a result of a baseline method. Scales
of suitability are devised in order to evaluate the system in terms of aver-
age score and standard deviation. In order to reach statistical significance
and avoid user-bias issues, the number of subjects involved in the subjective
evaluation should be the highest possible. Therefore, instead of “manually”
recruiting the respondents, a survey could be carried out through a crowd-
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sourcing framework, e.g. Amazon MTurk. But accessing to a large number
of respondents turns to be disadvantageous when the rate of spam is high1.
All the aforementioned factors suggest that the evaluation of the automatic
music video generation system presented in this thesis should be thoroughly
designed.

6.2 Assess each Layer First

The system presented in this thesis includes a number of di�erent problems,
namely:

• given a user entry in the form of text, music has to be pre-selected
from a local repository;

• given a set of soundtracks, each soundtrack has to be synchronized to
a given video, in this:

– each soundtrack has to be analyzed in order to detect salient
auditory events;

– the video has to be analyzed in order to detect salient visual
events;

• synchronized videos have to be ranked according to the degree of syn-
chronization match.

Being independent problems, each individual component can be assessed
separately. Furthermore, without an intermediate evaluation of the system,
it would be useless to run a full evaluation.

6.2.1 Music Pre-Selection

The music pre-selection problem can be seen as a ranked search problem in
which a query is given and the top-k documents are retrieved. Returned
documents can be judged as relevant or non-relevant. This would suggest
to adopt the precision and the recall as scores. But it is desirable to also

1When a user survey respondent has not been “manually” recruited, it can happen that
he may only be interested in completing as many surveys as possible rather than taking
care of the quality of his answers. This scenario usually leads to the submissions of spam
answers.
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consider the order in which the returned documents are presented. Then,
the Mean Average Precision (MAP) score can be used to evaluate the music
pre-selection component. It is a well-known IR performance measure which
indeed takes into account the ranking position of a retrieved document.
In order to compute the MAP score, a ground truth is required. It can be
built as follows:

• a set of queries is collected;

• for each query, each document in the collection is labeled as relevant
or non-relevant with respect to the query;

• for each query, the ranked set of retrieved documents is stored.

Therefore, in the specific case of the music pre-selection component, it is
necessary to build a ground truth as described above. Unfortunately, it is
not straightforward because, even for a small collection of music (e.g. 50
items), it takes too much time for a subject to judge whether each music
piece is relevant with respect to the query.
Even if other strategies may be considered in order to e�ciently build the
ground truth, it could be better to first assess the music pre-selection algo-
rithm looking for undesired behaviors. For instance, one could check whether
hubness occurs. This phenomenon occurs when the algorithm tends to al-
ways answer with a small subset of the indexed music. Given a large set
of queries, this could be easily verified plotting the number of times that a
music item is retrieved.

6.2.2 Audiovisual Content Analysis

Both the audio and the videos streams are analyzed as intensity features
(see Definition 5.4). As already explained, an intensity feature encodes two
aspects of the audiovisual content: when a salient event occurs and the
extent to which is relevant.
Therefore, the audiovisual content analysis can be seen as a classification
problem in which events are salient or non-salient and salient events can be
judged as slightly relevant, relevant of very relevant.
A ground truth can be obtained asking to the subjects to add temporal
marks in correspondence of salient events; in addition they can specify a
label to express the grade of relevancy. Once the data are collected, two
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assessments can be done. The first one assesses the precision and the recall
of the algorithm when seen as a salient event detector. The second one
measures the extent to what the amplitude dimension of an intensity feature
reflects the relevancy perceived by human subjects. For instance, this can
be done considering the three grades of relevancy as labels and defining the
thresholds for the intensity features so that labels can be compared and a
confusion matrix can be computed.

6.2.3 Audiovisual Synchronization

In order to solve the best synchronization problem of the Definition 5.1, a
set of synchronization scores is computed. This set can be used to make a
first ranking: given a video and a soundtrack, the set of feasible audio lags is
ranked by the synchronization score associated to each lag. The top ranked
audio lag is defined as the best audio lag. Then, the Algorithm 5.3 makes a
second ranking in the following way: given a video and a set of soundtracks,
the set of synchronized audiovisual pairs is ranked by the synchronization
score associated to the best audio lag.
Recalling the layout of the synchronization framework presented in the Sec-
tion 5.1, the first ranking can be associated to the problem solved in the inner
layer, while the second ranking can be associated to the problem solved in
the outer layer.
Being ranking problems, one could again use the MAP score. In this case,
it is necessary to make clear what a query and a document are for each
ranking problem. As for the former, the query is the audiovisual pair and
a document is a synchronized video in which a specific audio lag has been
used to align the music to the video. While in the latter case, the query
consists of a video and a set of soundtracks, or a set of audiovisual pairs in
which the video stream is always the same. The retrieved documents are
the synchronized videos in which the best audio lags have been used to align
the streams.
A ground truth for the first ranking problem can be built as follows:

• a set of queries consisting of audiovisual pairs is collected;

• for each query:

– the top-k audio lags are extracted from the computed synchro-
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nization scores vector2;
– the audiovisual pair is synchronized k times considering the top-k

audio lags;
– each synchronized video is judged from a subject as well-synchronized

or weakly-synchronized, that is to say relevant or non-relevant.

The choice of considering only the top-k audio lags instead of any feasible
audio lag is motivated by the following facts. Considering the whole set of
feasible audio lags would lead to a huge number of synchronized videos to
be judged (e.g. the number of feasible lags for a video of 4 minutes at 30 fps
and a music track of 5 minutes is about 20000). Therefore, a criterion to
reduce the number of synchronized videos is required. The typical pattern
for the distribution of the synchronization scores has been shown in Figure
5.15: the best audio lag lies in the most right bin and does not belong to
the part in which the majority of synchronization scores fall. Considering
the top-k audio lags leads to including the best audio lag and other k ≠ 1
lags; the latter are quite similar in terms of synchronization scores. Thus, a
comparison between the best solution and a random solution is achieved.
Similarly, a ground truth for the second ranking problem can be built as
follows:

• a set of queries consisting of a video and a set of n soundtracks is
collected;

• for each query:

– each audiovisual pair is synchronized using the best audio lag;
– a subject select the 3 out of n best synchronized videos, that is

to say 3 relevant documents are chosen.

In both cases, the MAP score should be a useful way to assess whether the
audiovisual synchronization and the synchronization score based ranking are
e�ective.

6.3 Full System Evaluation

When the individual components are assessed and the e�ectiveness is proved
by experimental results, the whole system could be subjectively evaluated.

2The synchronization scores vector is defined in the Definition 5.11.
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For instance, a survey can be carried out in which respondents have to judge
to what extent the system fulfilled their expectations. A respondent could
report whether the output videos are better than the uploaded video and
why. In this, a motivation field could help in understanding whether the
techniques used in the system to select suitable music and to synchronize it
to the video are e�ective.
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Chapter 7

Conclusions

In this thesis project, the problem of automatically adding music to user
generated videos has been addressed. Suitable music and suitable synchro-
nizations can make such videos more attractive for sharing on the Web. Two
scientific challenges have been identified in this work. Firstly, a number of
soundtracks have to be selected from a large collection of music. Then, the
selected music pieces have to be synchronized with the user generated video.
The best synchronized videos are finally shown to the user.

As for the first challenge, state-of-the-art approaches are mainly based on
the idea to select music according to audiovisual contents match criteria.
Even if di�erent approaches have been proposed, the researchers always
have considered the user generated video as the unique available informa-
tion to make a choice. Inspired by musicology and psychology insights, and
supported by the outcomes of a crowdsourcing experiment, in this work the
idea of uncovering the user intent has been used to enrich the set of input
data through which suitable music is retrieved.
The second challenge, namely the video to music synchronization, has been
the main focus in this thesis project. Two contributions have been given.
Audiovisual features have been devised in order to detect salient musical
and visual events which are used as anchor points. As it has been sug-
gested by the authors of previous works, new descriptors, which are more
semantic oriented than common low level features, have been sought. The
idea of looking at the visual motion and the audio novelty is also based
on how musical and cinematic plot descriptions have been reported in the
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aforementioned crowdsourcing experiment. The second contribute is given
by the definition of an audiovisual synchronization framework. Thanks to
this framework, many di�erent techniques to analyze and synchronize au-
diovisual streams can be used and compared.

Details regarding the evaluation of the system are given in the form of de-
sign proposals. The problems associated to each individual component have
been restated as an isolated retrieval problem so that well-known evaluation
measures can be used. As for the whole system, some general ideas to carry
out a subjective evaluation has been reported.
Apart from evaluating the system, it has been planned to improve some
components. This should be done before a full system assessment is carried
out. The motivation id that it might be hard repeated more than once the
full evaluation. Some possible improvements are reported below.
When music is retrieved by the user text entries, term boosting can be ap-
plied to the plot entry so that each word is weighted. For instance, adjectives
and names are first found via Part-of-Speech tagging and then the names in
the entry are boosted looking at the number of associated adjectives. This
should be useful to put the focus on the most relevant words.
The idea of considering the user intent could be also extended to the au-
diovisual synchronization component. One could ask to the user to select
a specific object in the video (e.g. drawing a bounding box). The object is
tracked along the time and its velocity is estimated. The velocity is finally
used as a visual intensity feature. As for the music, a similar hint can be
asked to the user. Given a music track, a user could highlight a short seg-
ment which he considers salient. Through audio self-similarity techniques
based on timbral frame representations, those parts which are similar to the
highlighted audio segment are detected. The values of an auditory intensity
feature vector are then boosted in correspondence of such similar parts.
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Appendix A

Lucene - Full-Text Search
Engine

Lucene1 is a full-text search engine library adopted for text indexing and
searching. It has been used in the implementation of the Story-Driven
Soundtrack Pre-Selection pipeline presented in Chapter 4. In particular,
it has been exploited its feature to rank the search results. In this appendix,
details regarding indexing, retrieval and ranked search through Lucene are
briefly presented.

A.1 Lucene Framework

The Lucene framework essentially consists of entities and analyzers which
are reported together with their relationships in Figure A.1:

(a) entities (b) analyzers

Figure A.1: Lucene framework

In the Figure A.1a, the Index is the collection of indexed Documents which
are described by a series of Fields. Each Field has a name, a value and a
series of options. For instance, one can choose whether, and eventually how,

1
http://lucene.apache.org/core/
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a field has to be stored and/or indexed.
The Figure A.1b refers to the text analyzers which have to implement the
interface Analyzer. A number of default analyzers are already implemented
such as the StandardAnalyzer. Analyzers define the way the text is tok-
enized, which filters are employed (e.g. stopwords removal, stemming) and
the recognition of particular types of text (e.g. email address).

A.2 Indexing

At the indexing stage, an index is built instancing the Index class and adding
to it instances of the Document class. The document is the indexed/retrieved
unit. In order to index the content, a suitable text analyzer must be speci-
fied: for instance the StandardAnalyzer class removes stop words and recog-
nize email addresses and acronyms in contrast to the WhitespaceAnalyzer

class which splits tokens at whitespace. The sequence diagram in Figure
A.2 resumes the index building procedure:































 



 



Figure A.2: Indexing with Lucene

In the indexes presented in Chapter 4, two fields have been defined: the
key and the indexed content. The former is stored but not indexed, while
the latter is only indexed. This allows to compare the query to the indexed
content field. The document retrieved through this comparison are used to
collect their value in the key field. The set of keys is returned as answer set.

A.3 Retrieval

The sequence diagram of the retrieval stage is shown in Figure A.3. The
index in which one would search documents is accessed through an instance
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of the IndexSearcher class. A pointer to the index has to be passed in the
constructor as a Directory object.
The appropriate analyzer has to be instantiated; it has to be the same
used at the indexing time (e.g. StandardAnalyzer). This is used to in-
stance the QueryParser class which parses the textual query through the
QueryParser::parse() method. An instance of Query is then returned.
Providing the query and an integer specifying the amount of elements to be
retrieved to the IndexSearcher::Search() method, results are returned as
a TopDocs instance. This object allows the iteration of the ordered set of
documents ranked by computed scores.









































Figure A.3: Retrieval with Lucene

A.4 Ranked Search

The last aspect discussed in this appendix regards the internal documents
ranking in Lucene. The predefined score is the well-known measure called
length-normalized TF-IDF in which the main contribute is given by the
following factors2:

• TF: Term Frequency, how often a term appears in a document
implication: the more frequent a term occurs in a document, the
greater its score
rationale: documents which contains more of a term are generally more
relevant

• IDF: Inverse Document Frequency, how often a term appears across
the index

2This section is strongly inspired by the Kelvin Tan’s tutorial available at http:

//www.lucenetutorial.com/advanced-topics/scoring.html; the o�cial Lucene docu-
mentation section regarding document similarity is available at http://lucene.apache.

org/core/3_6_0/api/all/org/apache/lucene/search/Similarity.html.
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implication: the greater the occurrence of a term in di�erent docu-
ments, the lower its score
rationale: common terms are less important than uncommon ones

• Coord: number of terms in the query that were found in the document
implication: a document that contains more terms in the query will
have a higher score
rationale: self-explanatory

• LengthNorm: measure of the importance of a term according to the
total number of terms in the field
implication: a term matched in fields with less terms have a higher
score
rationale: a term in a field with less terms is more important than one
with more

In the end, the score is defined as follows (to the exclusion of other factors
irrelevant in this context):

Definition A.1 (Lucene Scoring Function approximation)
score(q, d) = Coord(q, d) ◊

q
tœq

(TF(t œ d) ◊ IDF(t) ◊ LengthNorm(t œ d))

where q is the query, d is the document and t is a term

Further details about the Lucene framework and two comprehensive tu-
torials are available at http://www.lucenetutorial.com/ and http://

tinyurl.com/IBM-lucene-tutorial

3.

3
http://www.ibm.com/developerworks/opensource/library/

os-apache-lucenesearch/ (full url).
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