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Fig. 3. Two fusion strategies: early fusion (at the descriptor level) and late fusion (at the codebook level).

Fig. 4. Classification accuracy on the KTH dataset using k-means clus-
tering, hard assignment, and different descriptors combination strategies (i.e.,
early or late fusion). (a) H3DGrad. (b) HOF. (c) H3DGrad+HOF (early).
(d) H3DGrad+HOF (late).

TABLE II
AVERAGE CLASS ACCURACY OF OUR DESCRIPTORS, ALONE AND COMBINED,

ON THE KTH AND WEIZMANN DATASETS

contrast, radius-based shows amuch less uniform frequency dis-
tribution. Interestingly, with radius-based clustering, the code-

word distribution of the human action vocabulary is similar to
the Zipf’s law for textual corpuses. Therefore, it seems reason-
able to assume that codewords at intermediate frequencies are
the most informative also for human action classification and
the best candidates for the formation of the codebook.
Due to the high dimensionality of the descriptor, codebooks

for human actions usually have cluster centers that are spread
in the feature space, so that two or more codewords are equally
relevant for a feature point (codeword uncertainty); moreover,
cluster centers are often too far from feature points so that
they are not anymore representative (codeword plausibility).
With radius-based clustering, codeword uncertainty is critical
because it frequently happens that feature points are close to the
codewords boundaries [46]. Instead, codeword plausibility is
naturally relaxed due to the fact that clusters are more uniformly
distributed in the feature space. To reduce the uncertainty in
codeword assignment, we therefore performed radius-based
clustering with soft assignment by Gaussian kernel density es-
timation smoothing. In this case, the histogram is computed
as

(11)

where is the Gaussian kernel, and
where is the scale parameter

tuned on the training set, and is the Euclidean distance.
Fig. 6 compares the classification accuracy with codebooks

obtained with k-means clustering with both hard and soft as-
signment and radius-based clustering with soft assignment, re-
spectively for the KTH and Weizmann dataset. The plots have
been obtained by progressively adding less frequent codewords
to the codebooks (up to 4000 and 1000 codewords, respectively,
for the two datasets). The performance of k-means is improved
by the use of soft assignment. With a small number of words,
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Figure 2. Log-log plots of visual words frequency using k-means

and radius-based quantization.

words are distributed in a visual corpus, as also noted in
[10, 20, 28]. In particular, we want to know whether their
distribution satisfies Zipf’s law. Fig. 2 shows the statistics
of visual words frequency using k-means and radius-based
quantization on our experimental dataset (see Sect. 4 for de-
tails). An “ideal” Zipf’s distribution must be a straight line
in log-log scale. The figure shows that the distribution of
visual words obtained by k-means quantization satisfies the
Zipf’s law only roughly. In fact, most of the bins has sim-
ilar frequencies and they are distributed more evenly with
respect to the expected power law. In contrast, the proposed
radius-based quantization shows a statistics that fit better
the expected distribution. This confirms the assumptions
discussed in the previous paragraph and confirms that this
approach models better medium density frequencies.

3.2. Codeword Assignment

Given a vocabulary, the traditional codebook approach
represents a video sequence containing an action by a his-
togram of codeword frequencies. In particular, for each
word w in the vocabulary V the frequency distribution in
a sequence is computed by:

FD(w) =
1

n

n
∑

i=1







1 if w = argmin
v∈V

(D(v, pi));

0 otherwise;
(7)

where n is the number of spatio-temporal patches in a se-
quence, pi is the ith spatio-temporal patch, and D(v, pi) is
the distance (usually Euclidean) between the codeword v
and the patch pi. This hard assignment, that takes account
only of the closest codeword, lacks to consider two issues:
codeword uncertainty (selection of the correct codeword
when two or more candidates are relevant) and codeword
plausibility (selection of a codeword when all codewords
are too far and not representative). We observe that, in our
case, the plausibility is less problematic, because the radius-
based clustering method that we employ is able to allocate

Walking

    KTH           Weizmann

Running

    KTH           Weizmann

Waving

    KTH           Weizmann

Figure 3. Sample frames from the KTH and Weizmann datasets

(Walking, Running and Waving actions).

the centers more uniformly. On the other hand, as noted
by van Gemert et al. [24], in a high-dimensional feature
space the codeword uncertainty issue becomes very urgent.
In fact, if we consider a codeword as a high-dimensional
sphere in feature space, most feature points in this sphere
lay near the surface and are close to the boundary between
different codewords. For this reason the distribution of the
codewords in a sequence has to contain the information
of two or more relevant candidates. This can be done by
smoothing the hard assignment of a spatio-temporal patch
to the codeword vocabulary using Gaussian kernel density
estimation, computing the uncertainty frequency distribu-
tion with:

UFD(w) =
1

n

n
∑

i=1

Kσ(D(w, pi))
∑|V |

j=1
Kσ(D(vj , pi))

(8)

where D is the Euclidean distance and Kσ is the Gaussian
kernel:

Kσ(x) =
1√
2πσ

exp

(

−
1

2

x2

σ2

)

(9)

where σ is the scale parameter of the Gaussian kernel; this
parameter has to be tuned on the training set, because de-
pendent on the dataset, the features length and their range
values.

4. Experimental Results

We tested our approach on two datasets commonly used
for human action recognition: the KTH and Weizmann
datasets. The KTH dataset contains 2391 video sequences
showing six actions: walking, running, jogging, hand-
clapping, hand-waving, boxing. They are performed by
25 actors under four different scenarios of illumination,
appearance and scale change. The video resolution is
160 × 120 pixel. The Weizmann dataset contains 93 video
sequences showing nine different people, each performing
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 Web 2.0: Social Media

• Facebook 

- 964 million monthly active users on March 2013

- an average user has 130 friends   (Dunbar’s number = 150)

- more than 3.5 billion images/videos/etc. shared per week

• Twitter

- 200 Millions of monthly active Twitter users

- 175 Millions of tweets per day sent in 2012  (307 avg per user) 

• Flickr

- Flickr hosts more than 6.7 billion images

- ~4 millions new uploads per day

• Youtube

- ~4 billion views a day and 60-70 hours of videos uploaded per minute

Source:	
  Social	
  Media	
  Sta/s/cs	
  (2012)

It took to reach 50 million users:
- Telephone: 75 years
- Radio: 38 years
- TV: 13 years
- Internet: 4 years



Tags and Folksonomies

• Tags imposed by social networking define soft organizations 
on data (folksonomies); they pose new opportunities of 
semantic extraction from visual data w.r.t. to fixed 
taxonomies that are rigid and centralized

• Main challenges:

- tags are often imprecise and ambiguous; their order does not 
correspond to tag relevance and they are influenced by cultural aspects

- tags are often irrelevant to the visual content and overly personalized

- spontaneous choice of words with large variability among different 
users: polysemy, synonymy, ...

- semantic loss in the textual descriptions: meaningful tags missing

Query: “airplane”

day$me
beach
airplane
ocean

airplane
twin
engine
los	
  angeles



Flickr Tags Distributions

• Tag frequency:

- the head of the distribution contains too generic tags (wedding, party,…)

- the tail contains the infrequent tags with incidentally occurring terms 
such as misspellings and complex phrases

• Number of tags per image:

- about 64% of images have only 1-3 tags

Distribution of the number of tags per imageDistribution of the tag frequency in Flickr

Source:	
  Sigurbjörnsson	
  et	
  al.,	
  WWW	
  2008

Source	
  data:
-­‐	
  52	
  Million	
  Flickr	
  photos
-­‐	
  3.7	
  million	
  unique	
  tags



WordNet Categories for Flickr Tags

• The distribution of Flickr tags over the most common 
WordNet categories

- 52% of the tags is correctly classified

- 48% of the tags is left unclassified

• Nearly one half of tags are irrelevant for general audience

Source:	
  Sigurbjörnsson	
  et	
  al.,	
  WWW	
  2008
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Figure 1: Distribution of the Tag Frequency in
Flickr.

by a power law [19, 1], and the probability of a tag having
tag frequency x is proportional to x

�1.15. With respect to
the tag recommendation task, the head of the power law
contains tags that would be too generic to be useful as a
tag suggestion. For example the top 5 most frequent occur-
ring tags are: 2006, 2005, wedding, party, and 2004. The
very tail of the power law contains the infrequent tags that
typically can be categorised as incidentally occurring words,
such as mis-spellings, and complex phrases. For example:
ambrose tompkins, ambient vector, and more than 15.7 mil-
lion other tags that occur only once in this Flickr snapshot.
Due to their infrequent nature, we expect that these highly
specific tags will only be useful recommendations in excep-
tional cases.
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Figure 2: Distribution of the number of tags per
photo in Flickr.

Figure 2 shows the distribution of the number of tags per
photo also follows a power law distribution. The x-axis rep-
resents the 52 million photos, ordered by the number of tags
per photo (descending). The y-axis refers to the number
of tags assigned to the corresponding photo. The proba-
bility of having x tags per photo is proportional to x

�0.33.
Again, in context of the tag recommendation task, the head
of the power law contains photos that are already exception-

28%

16%

13%

9%

7%

27%

Unclassified Location Artefact or Object Person or Group Action or Event Time Other

48%

Figure 3: Most frequent WordNet categories for
Flickr tags.

ally exhaustively annotated, as there are photos that have
more than 50 tags defined. Obviously, it will be hard to
provide useful recommendations in such a case. The tail of
the power law consists of more than 15 million photos with
only a single tag annotated and 17 million photos having
only 2 or 3 tags. Together this already covers 64% of the
photos. Typically, these are the cases where we expect tag
recommendation to be useful to extend the annotation of
the photo.

To analyse the behaviour of the tag recommendation sys-
tems for photos with di↵erent levels of exhaustiveness of the
original annotation, we have defined four classes, as shown
in Table 1. The classes di↵erentiate from sparsely annotated
to exhaustively annotated photos, and take the distribution
of the number of tags per photo into account as is shown in
the last column of the table. In Section 6, we will use this
categorisation to analyse the performance for the di↵erent
annotation classes.

Tags per photo Photos
Class I 1 ⇡ 15,500,000
Class II 2 – 3 ⇡ 17,500,000
Class III 4 – 6 ⇡ 12,000,000
Class IV > 6 ⇡ 7,000,000

Table 1: The definition of photo-tag classes and the
number of photos in each class.

3.3 Tag Categorisation
To answer the question “What are users tagging?”, we

have mapped Flickr tags onto the WordNet broad cate-
gories [10]. In a number of cases, multiple WordNet cat-
egory entries are defined for a term. In that case, the tag is
bound to the category with the highest ranking. Consider
for example the tag London. According to WordNet, London
belongs to two categories: noun.location, which refers to
the city London, and noun.person, referring to the novelist
Jack London. In this case the location category is ranked
higher than the person. Hence, we consider the tag London
to refer to the location.

Figure 3 shows the distribution of Flickr tags over the
most common WordNet categories. Following this approach,
we can classify 52% of the tags in the collection, leaving 48%
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The Wisdom of Crowds

• The Wisdom of Crowds: “the verdict of a group of people is closer 
to the truth than that of any individual in the group” [Galton 1906]

• The crowd could contribute to reach a “statistical regularity” 
in the tag vocabulary

• Mechanisms to convert opinions into an aggregated verdict:

- tag co-occurrence: the number of images where several tags are used in 
the same annotation is the key to tag recommendation 

- visual content-tag association: if different persons label visually similar 
images with the same tags, these tags are likely to reflect objective 
aspects of the visual content

- consider the complex relationships of tags in a folksonomy



child
girl child
party             
birthday         
nikon
d40
candle          
pie               
apple
berries       
hand          

Luigi Torreggiani, CC BY 2.0 license.

child
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party             
birthday         
nikon
d40
candle          
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apple
berries       
hand          

Luigi Torreggiani, CC BY 2.0 license.

How to Improve Image Tags? 

• Tag Refinement: the goal is removing noisy tags, 
disambiguating tags and recommending new tags that are 
relevant to the visual content and the other tags

• Related tasks are: Tag Suggestion/Recommendation, Tag Re-
ranking/Relevance

child
girl child
party              context
birthday          context
nikon
d40
candle           content
pie                content
apple
berries        content
hand           content

Luigi Torreggiani, CC BY 2.0 license.



Taxonomy of Main Research Contributions

Tag Ranking and 
Image Retrieval

Tag Suggestion and 
Refinement

Image 
AutoAnnotation

Statistical 
modeling Data-driven 

Neighbours 
voting

Li X. [2008]

RWR
D. Liu [2009]

Statistical 
modeling Data-driven 

Visual Synsets
D. Tsai [2011]

TCRT
D. Liu [2011]

JEC Distance
Makadia [2008]

LRES 
Factorization
G. Zhu [2010]

Tucker3 Modeling
J. Sang [2012]

CNMF
Y. Liu [2010]

TRVSC
D. Liu [2010]

TagProp 
M. Guillaumin [2009]

TagProp on Mirflickr
J. Verbeek [2010]

Statistical 
modeling Data-driven 

TagRelevance
Li X. [2009]

TagRelevance 
Multi Distances

Li X. [2010]

PMF 
Z. Li [2010]

• Previous works may be divided into two main categories of 
approaches:

- Based on statistical modeling (e.g. matrix factorization)

- Based on data-driven techniques (e.g. NN voting)



Tag Refinement: Data-driven Approach

• Data driven methods exploit binary image-tag relations; they 
assume there exist large well labeled dataset where one can 
find visual “near-duplicates” of the image

• Ground on the idea of selecting a set of visually similar 
images and then extract a set of relevant tags using a tag 
transfer procedure (usually a Nearest-Neighbor voting 
scheme)

• Usually applied for Image Annotation or Retrieval:

- Simple Label Transfer (SLT) / JEC: Makadia et al. ECCV’08, IJCV’10

- Tag Relevance Learning (TR): X. Li & Snoek, IEEE-TMM’09, CIVR’10

- Tag Propagation (TagProp): Guillaumin et al. ICCV’09, MIR’10



Simple Label Transfer (SLT)

• Images are ranked according to content similarity distances 
(using multiple visual features)

• Two strategies for fusion: Joint Equal Contribution (JEC) 
between distances or Lasso

• The most similar image is selected and its tags are applied

References:	
  Makadia	
  et	
  al.,	
  “A	
  new	
  baseline	
  for	
  image	
  annota/on”,	
  ECCV	
  2008,	
  IJCV	
  2010
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• If additional tags are required, the closest images are selected 
and their tags applied, according to their co-occurrence with 
the keywords transferred and their frequency
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Tag Relevance

• Key assumption: “If different persons label visually similar 
images using the same tags, then these tags are more likely 
to reflect objective aspects of the visual content”

- define a tag relevance measure by considering the distribution of the tag 
in the neighbor set of the image and in the entire collection

- the more frequent a tag is in the neighbor set the more relevant it is

References:	
  X.	
  Li	
  and	
  C.	
  Snoek,	
  “Learning	
  social	
  tag	
  relevance	
  by	
  neighbor	
  vo/ng”,	
  IEEE-­‐TMM	
  2009,	
  CIVR	
  2010



LI ET AL.: LEARNING SOCIAL TAG RELEVANCE BY NEIGHBOR VOTING 5

we use (P (Rw) + εI,w) to represent the probability that an
image randomly selected from the neighbor set NNf (I, k) is
relevant with respect to w. Since an image is either relevant
or irrelevant to w, we use (1 − (P (Rw) + εI,w)), namely
(P (Rc

w) − εI,w), to represent the probability that an image
randomly selected from NNf (I, k) is irrelevant with respect
to w. Then, the number of relevant images in the neighbor set
is expressed as

|Nf (I, k) ∩ Rw| = k · (P (Rw) + εI,w), (3)

and the number of irrelevant images in the neighbor set as

|Nf (I, k) ∩ Rc
w| = k · (P (Rc

w) − εI,w). (4)

It is worth mentioning that the variable εI,w is introduced to
help us derive important properties of the proposed algorithm.
We do not rely on εI,w for implementing the algorithm.

Based on the above discussion, if the visual search is equal
to random sampling, we have εI,w = 0. If the visual is better
than random sampling, we have

εI1,w > 0 > εI2,w, for I1 ∈ Rw and I2 ∈ Rc
w. (5)

We then make our second assumption as

Assumption 2: Visual search. A content-based

visual search is better than random sampling.

Bearing the analysis of user tagging and visual search in
mind, we now consider the distribution of tag w within the
neighbor set of image I . Since we can divide the neighbor set
into two distinct subsets Nf (I, k) ∩ Rw and Nf (I, k) ∩ Rc

w,
we count the number of w in the two subsets, separately. That
is,

nw[Nf (I, k)] = nw[Nf (I, k) ∩ Rw] + nw[Nf (I, k) ∩ Rc
w]

= k · (P (Rw) + εI,w)P (w|Rw)+
k · (P (Rc

w) − εI,w)P (w|Rc
w).

(6)
In a similar fashion we derive

nw[Nrand(k)] = k · (P (Rw)P (w|Rw) + P (Rc
w)P (w|Rc

w)) .
(7)

Since nw[Nrand(k)] reflects the occurrence frequency of w
in the entire collection, we denote it as Prior(w, k). By
substituting Eq. 7 into Eq. 6, we obtain

nw[Nf (I, k)]−Prior(w, k) = k·(P (w|Rw) − P (w|Rc
w)) εI,w.

(8)
Further, by defining

tagRelevance(w, I, k) := nw[Nf (I, k)] − Prior(w, k), (9)

we arrive at the following two theorems:

Theorem 1: Image ranking. Given assumption 1

and assumption 2, tagRelevance yields an ideal

image ranking for tag w, that is, for I1 ∈ Rw

and I2 ∈ Rc
w, we have tagRelevance(w, I1) >

tagRelevance(w, I2).

Theorem 2: Tag ranking. Given assumption 1

and assumption 2, tagRelevance yields an ideal

tag ranking for image I , that is, for two tags w1

and w2, if I ∈ Rw1
and I ∈ R̄w2

, we have

tagRelevance(w1, I) > tagRelevance(w2, I).

We refer to the appendix for detailed proofs of the two
theorems. Note that in the proof of theorem 1, assumption
2 (Eq. 5) can be relaxed as (εI1,w > εI2,w) which we call
relaxed assumption 2. Since the relaxed assumption is more
likely to hold than its origin, this observation indicates that
image ranking is relatively easier than tag ranking.

Our tag relevance function in Eq. 9 consists of two compo-
nents which represents the distribution of the tag in the local
neighborhood and in the entire collection, respectively. This
observation confirms our conjecture made in the beginning of
Section III that a good tag relevance measurement should take
both distribution into account.

C. A Neighbor Voting Algorithm

We have argued in Section III-B that learning tag relevance
boils down to computing (nw[Nf (I, k)] − Prior(w, k)), i.e.,
the count of tag w in the k nearest neighbors of image I minus
the prior frequency of w. Consider that each neighbor votes on
w if it is labeled with w itself, nw[Nf (I, k)] is then the count
of neighbor votes on w. Thereby, we introduce a neighbor
voting algorithm: given a user-tagged image, we first perform
content-based k-nn search to find its visual neighbors, and then
for each neighbor image, we use its tags to vote on tags of
the given image. We approximate the prior frequency of tag
w as

Prior(w, k) ≈ k
|Lw|

|Φ|
, (10)

where k is the number of visual neighbors, |Lw| the number
of images labeled with w, and |Φ| the size of the entire
collection. Note that the function tagRelevance in Eq. 9 does
not necessarily obtain positive results. We set the minimum
value of tagRelevance to 1. In other words, if the learned
tag relevance value of a user-contriubted tag is less than its
original frequency in an image, we reject the tag relevance
learning result for that image. In addition, we observe that the
voting result might be biased by individual users who have a
number of visually similar images, as shown in Figure 3(a).
In order to make the voting decision more objective (which
we target at), we introduce a unique-user constraint on the
neighbor set. That is, each user has at most one image in the
neighbor set per voting round. As shown in Figure 3(b), with
the unique-user constraint we effectively reduce the voting
bias. We finally summarize the procedure for learning tag
relevance by neighbor voting in Algorithm 1.

IV. EXPERIMENTAL SETUP

A. Experiments

We evaluate our tag relevance learning algorithm in both an
image ranking scenario and a tag ranking scenario. For image
ranking, we compare three tag-based image retrieval methods
with and without tag relevance learning. For tag ranking, we
demonstrate the potential of our algorithm in helping user
tagging in two settings, namely, tag suggestion for labeled

nw counts the occurrences of w in the 
neighborhood Nf (I, k) of k similar images

Prior(w, k) is the frequency of occurrence 
of w in the collection
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TagProp: Weighted NN Image Annotation

• Learns a weighted nearest neighbor model to find the 
optimal combination of feature distances

- the model is defined using a probabilistic framework:

References:	
  Guillaumin	
  et	
  al.	
  “TagProp:	
  Discrimina/ve	
  metric	
  learning	
  in	
  nearest	
  neighbor	
  models	
  for	
  image	
  auto-­‐annota/on”,	
  ICCV	
  2009

p(yiw = +1) =
X

j

⇡ijp(yiw = +1|j)

p(yiw = +1|j) =
(
1� ✏ for yjw = +1

✏ otherwise.

⇡ij � 0 ^
P

j ⇡ij = 1

where 	

yiw ∈ {+1,-1} indicates whether tag w is relevant or not for image i
and πij is the weight of image j (from the visual neighbors) in respect to image i to be 
learned

• The objective is to maximize the log-likelihood by using EM

L =
X

i,w

ln p(yiw) =
X

i,w

ln
X

j

⇡ij p(yiw|j)



- weights can be defined as a function of distance of neighbors images:

- due to the unbalanced tags frequency, a word-specific logistic discriminant is 
used to boost the probability for rare terms and decrease it for the 
most frequent ones:

⇡ij =
exp(�d✓(i, j))P
j0 exp(�d✓(i, j0))

p(yiw = +1) = �(↵wxiw + �w)
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Figure 3: Coefficients of the linear distance com-
bination learned with TagProp with distance-based
weights, and sigmoid transformation included.
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Figure 4: Rank-based weights learned using the 15
base distances and their equally weighted sum. The
top panel shows the total weight associated with
each distance, and the bottom panel shows the total
weight associated with rank 1 up to 50.

Note that the weights are sparse: only seven of the 15 dis-
tance measures receive a non-zero weight. The most im-
portant distance measures are the ones based on the Gist
descriptor, and the local SIFT descriptors. From the colour
features, only the Harris-Hue and the LAB and RGB his-
tograms that include spatial layout are used.

In Figure 4 we consider rank-based weights, when using
the 15 base distances together with their equal sum to de-
fine a 16-th set of neighbours. Remember that in this case
a weight for each combination of rank and distance mea-
sure is learned. To visualize the weights we look at the
total weight assigned to neighbours of a certain distance, by
summing over the weights assigned to that distance for dif-
ferent ranks. Similarly, we look at the total weight assigned
to neighbours of a certain rank, by summing over distance
measures. We observe that the weights drop quickly as a
function of their rank, and that also in this case the Gist de-
scriptor and the local SIFT descriptors are the most useful
to define the weights of neighbours. Interestingly, the equal
sum of distances receives the largest weight. This suggests
that images that are similar according to multiple distance
measures are the most useful to predict the annotations.
However, by also assigning weight to neighbours from other
distance measures a significant increase in performance is
obtained, cf. Figure 2.

For the following experiments, we use TagProp models
with sigmoid included, and with 200 and 1000 neighbours
for distance-based and rank-based weights respectively. Fig-
ure 5 gives an overview of the most ‘difficult’ images for Tag-
Prop using distance-based weights: for each of the 14 con-
cepts with a strict labeling we show the positive image with
the lowest score, and the negative image with the highest
score. Interestingly, for several concepts the highest scoring
negative example can be argued to be actually relevant (e.g.
for clouds, flower, night, portrait, river, sea, and tree).

4.2 Comparison with SVM classifiers
When dealing with a limited number of annotation con-

cepts, we can learn a separate classifier for each one of them
instead of using nearest neighbour style models as presented
above. The advantage of such an approach is that a separate
set of parameters can be learned for each concept to opti-
mally separate the relevant from the non-relevant images.

We trained support vector machine (SVM) classifiers us-
ing RBF kernels based on the equally weighted sum of our
base distances. The kernel function that compares two im-
ages is thus given by k(xi, xj) = exp(−d(xi, xj)/λ), where
d(xi, xj) is the equally weighted distance combination, and
λ is set as the average of all pairwise distances among the
training images. For a given concept, we can then rank the
images by the classifier output score.

In order to rank the concepts for a given image we need to
compare the SVM scores of different concepts. To this end
we used 10% of the training data of each concept to learn
a sigmoid to map the SVM scores to probabilities. In order
to set the regularization parameter of the SVMs we perform
10 fold cross-validation.

In Table 1 we present AP scores per annotated concept for
the SVM classifiers, as well as TagProp with distance-based
and rank-based weights. For reference, we also included the
precision for a random ranking, i.e. the fraction of relevant
images per concept. On average, TagProp performs similar
using either distance-based or rank-based weights, although
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clouds sky (0.99) female people (0.62)
sea clouds (0.94) indoor indoor (0.49)
sky water (0.90) male female (0.31)
structures sea (0.70) night portrait (0.30)
sunset sunset (0.51) people male (0.24)
water structures (0.43) portrait night (0.13)

clouds sky (0.60) clouds sky (0.99)
female structures (0.36) male clouds (0.99)
male tree (0.24) people water (0.69)
people people (0.18) sea structures (0.64)
sky clouds (0.17) sky sea (0.32)
structures indoor (0.13) water tree (0.32)

animals sky (0.90) animals sky (0.52)
bird water (0.53) bird water (0.50)
lake clouds (0.45) lake structures (0.48)
river structures (0.39) river people (0.23)
sea transport (0.29) sea tree (0.22)
water sunset (0.22) water clouds (0.20)

Figure 1: Example images from the MIR Flickr set, for each image we show the manually assigned annotation
terms, and those predicted using TagProp with the relevance estimate in brackets, and underlined if correct.
In the first row the top predicted terms coincide with the actual predictions, the middle row four of the top
six terms are correct (a typical situation), and in the last row only one of the top six predictions is correct.

collection of annotated training images. Annotation terms
of test images are predicted by means of a weighted sum
of the annotations of their neighbours: the visually most
similar images in the training set. TagProp can combine a
collection of several distance measures to define visual sim-
ilarity, capturing different aspects of image content, such as
local shape descriptors, and global colour histograms. The
parameters of the model combine the various visual simi-
larities to define the optimal weights to training images in
terms of the likelihood criterion. TagProp also includes a
term-specific sigmoid function to compensate for the differ-
ent frequencies of annotation terms.

Our model is inspired by recent successful methods [6,
13, 18], that propagate the annotations of training images
to new images. Our models are learnt in a discriminative
manner, rather than using held-out data [6], or using neigh-
bours in an adhoc manner to annotate images as in [18].
In [18] the authors also tried to combine different image
similarities by learning a binary classifier separating image
pairs that have several tags in common from images that
do not share any tags. However, this approach did not give
better results than an equally weighted combination of the
distance measures. Our model does successfully combine
different similarity measures, because we integrate learning
the distance combination in the model, rather than learn-
ing it through solving an auxiliary problem. Other nearest
neighbour techniques for image annotation include methods
based on label diffusion over a similarity graph of labeled
and unlabelled images [16, 22], or learning discriminative
models in neighbourhoods of test images [25].

Other related work includes a variety of generative mod-

els. To annotate a new image these models compute the
conditional probability over annotation terms given the vi-
sual features of the image. One important family of meth-
ods is based on topic models such as latent Dirichlet alloca-
tion, probabilistic latent semantic analysis, and hierarchical
Dirichlet processes, see e.g. [1, 20, 24]. A second family of
methods uses mixture models to define a joint distribution
over image features and annotation tags. Sometimes a fixed
number of mixture components over visual features per key-
word is used [3], while other models use the training images
as components to define a mixture model over visual features
and tags [6, 13]. The latter can be seen as non-parametric
density estimators over the co-occurrence of images and an-
notations. A potential weakness of generative models is that
they maximise the generative data likelihood, which is not
necessarily optimal for predictive performance. Discrimina-
tive models for tag prediction have also been proposed [4,
8, 10]. These methods learn a separate classifier for each
annotation term to predict whether a test image is relevant.

We assess the image annotation performance of different
variants of TagProp, and compare against an approach that
learns a separate classifier for each annotation term to pre-
dict its relevance for an image. For the separate classifiers
we choose non-linear support vector machines (SVMs) based
on local image features, which have shown state-of-the-art
performance for image classification [26]. Our evaluations
are performed using the MIR Flickr set [11], a recent data
set that contains 25.000 images downloaded from the Flickr
photo sharing website1. For each image, the tags associ-
ated with the image on the Flickr website are available, as

1See http://www.flickr.com.
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• MIRFlickr dataset

- 16 global and local features 

- distances: combination of L2 and e KL-divergence

- performance: macro and micro-average

• NUSWIDE dataset

- 428-d global features (color, wavelet, edge histograms)

- distance: L2

- performance: macro and micro-average
MIRFLICKR 

NUSWIDE 

References:	
  Uricchio	
  et	
  al.	
  “An	
  evalua/on	
  of	
  nearest-­‐neighbor	
  methods	
  for	
  tag	
  refinement”,	
  ICME	
  2013

NUSWIDE 270K NUSWIDE 240K MIRFlickr
Images 269,648 238,251 25,000

Train Set 161,789 158,834 10,000
Test Set 107,859 79,417 15,000

Ground-Truth Tags 81 81 27
Users - 24,625 9,862

Original Tags 5,018 5,018 1,386
Filtered Tags (Wikipedia) 521 - -
Filtered Tags (WordNet) - 684 219
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NN methods give comparable 
results to more complex state-of-
the-art approaches, despite their 
simplicity
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Extending Data-driven Methods to Video

• We have the same problems/challenges of images

• Moreover tags are not “localized” at the frame (shot) level

Query&tag:&ponte&vecchio&
video tags:
florence
italy
ponte vecchio
duomo
uffizzi
europe
...

florence
italy
ponte vecchio
duomo
...

florence
italy
ponte vecchio
duomo
...

References:	
  Ballan	
  et	
  al.	
  “Enriching	
  and	
  Localizing	
  Seman/c	
  Tags	
  in	
  Internet	
  Videos”,	
  ACM-­‐MM	
  2011



Our Framework

V 

 T 

K 

 I 
Retrieved Flickr images and Image 
Clustering 

- Images in I are retrieved using the tags in V; for each Ii in I and Kj in K we compute a global 
feature vector (GIST, HSV and edge hist)

- All the tags associated to images in the most similar cluster to Kj are retained in Tj



- The original tags in V are assumed as valid only if they are also in Tj

- The lis of tags is refined by analyzing Wikipedia (e.g. synonyms)

A
A BCADEC
FA EA
CC
CD

AC


AA
BCADFAEC
CC
EAD

BCAFA
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FA
BCAD

Figure 2: Overview of the system.

localization (see Fig. 1) in internet videos [1, 3, 10]. In [1]
shots of YouTube videos are automatically annotated using
Flickr images, with a tag relevance algorithm that, exploit-
ing visual similarity of keyframes and images, can also add
new tags that were not originally available in videos. Local-
ization of video tags is addressed in [3]; a multiple instance
learning approach that considers semantic relatedness of co-
occurring tags is used to model shots and videos. In [10]
video shots are annotated with 34 concept detectors, using
their results to build a semantic representation for each shot.
The same detectors are applied to Flickr images and seman-
tic similarity with video keyframes is used to suggest tags
selected from those of the images.
In this paper we propose a method for video tag suggestion

and temporal localization based on social knowledge. The
system exploits the tags associated to user-generated videos
and images uploaded to social sites (such as YouTube and
Flickr), their visual similarity and the Wikipedia folkson-
omy, to suggest new tags that can be associated at the shot
level to a particular keyframe. Fig. 2 shows an overview of
the system. The rest of the paper is organized as follows:
tag filtering and suggestion is described in Sect. 2; visual
analysis and tag relevance are presented in Sect. 3; exper-
imental results are presented in Sect. 4. Conclusions are
finally drawn in Sect. 5.

2. SOCIAL AND SEMANTIC TAG FILTER-
ING AND EXPANSION

The first step of our approach is the expansion of the tags
associated with the video to be annotated. This is required
because, as noted in [16], YouTube videos are annotated
with an average of five tags, a number that would not al-
low to produce a thorough annotation of all the shots. Tag
expansion is also needed to ease the alignment of different
folksonomies in YouTube and Flickr, to select the images
that will be used to associate the tags to keyframes.

Filtering. We filter the video tags that are candidate for
expansion, to reduce the risk of semantic drift. Given a
video V let U= {u1, · · ·un} be the user-defined tags, after

discarding stopwords, dates and numbers. We determine a
relevance score based on the following method. The tags
ut that appear in the video title get the maximum score
(score(ut) = 1), a behavior similar to that of web search
engines, while the scores of other tags are determined using
the related videos, provided by YouTube.

The basic intuition is that the score of a tag in the video
can be inferred from tags of the related videos: the more fre-
quently a tag occurs in the related videos, the more relevant
it might be. In particular, consider the m related videos
of V and their tags. Let nu be the number of occurrences
of tag u in the related videos, we compute its relevance as
ru = nu/m. Tags with low values are discarded (r < 0.15),
while tags with high relevance (r > 0.85) take scores equal to
1 and are called “strong” tags. For all the other “weak” tags
we consider their co-occurrence and semantic relation with
the “strong” tags. Co-occurrence between two tags is the
number of videos where both tags are used. This value is not
very meaningful, as it does not consider the frequency of the
individual tags. Therefore we normalize the co-occurrence
using the asymmetric normalization method, i.e. with the
frequency of one of the tags as in: o(u1, u2) = n(u1,u2)/nu1

,
where n(u1,u2) is the number of times that the tag u1 co-
occurs with tag u2. This normalization has been found to
improve the diversity of the tags [13]. In particular we com-
pute the co-occurrence between each “weak” tag and the
“strongest”tag (i.e. the tag with maximum r). Then we eval-
uate the semantic relatedness with“strong”tags, considering
the hyperlinks between the corresponding Wikipedia articles
using the method in [9]; the maximum value, su, is consid-
ered. Finally, the scores of the “weak” tags is computed as
the weighted sum of their relevance in related videos, their
co-occurrence with the “strongest” tag ū and their semantic
relationship with the “strong” tags as:

score(u) = w1 · ru + w2 · o(u, ū) + w3 · su

Tags with a score less than a threshold (τfiltering) are dis-
carded, while the others are used in the next step.

Expansion. Tag expansion is done considering two aspects:
i) social information, using tags of the related videos, and
ii) semantic information and folksonomies, using Wikipedia.
For the first aspect we consider the occurrences of the tags
in the related videos: those with a high number of occur-
rences, that are not in the list of filtered tags of the analyzed
video, are inserted. For the second step we use Wikipedia
articles to expand semantically the tags. First we choose the
search terms to select Wikipedia resources. Search terms are
defined by a single tag or by a combination of two tags (ini-
tial experiments have shown that larger combinations are
ineffective). The combination of tags is useful for the dis-
ambiguation of concepts (e.g. consider the combination of
“golden” and “gate”). Two tags are combined if their co-
occurrence in related videos, o(u1, u2), is high; experimen-
tally we found that an effective threshold is 0.9. Search
terms are used to select relevant Wikipedia articles, using
Wikipedia Miner toolkit [8]. For each Wikipedia resource
we consider the list of anchors, i.e. text used within links to
Wikipedia articles, as candidate tags. The anchors that are
more frequently used are added to the tag list.

3. APPEARANCE-BASEDTAGRELEVANCE
Videos are segmented in shots using a fast algorithm that

- Tag Relevance is computer for each t in Tj as previously reported [Li and Snoek, TMM’09]

- The five most relevant tags are added at the shot level

- The union of all tags that have been added at the shot level are used for video annotation



Experiments

• YouTube60 dataset

- 1,135 shots - 3,405 keyframes annotated

- all the original tags are provided (min 3, max 26 per video)

- for each tag 15 Flickr images have been downloaded

- 5 additional Flickr images for each synonym

4.  Entertainment+
5.  Film+&+Anima1on+
6.  Gaming+

1.  Cars+&+Vehicles+
2.  Comedy+
3.  Educa1on+

13. Sport+
14. Travel+&+Events+
 

10. People+&+Blogs+
11. Pets+&+Animals+
12. Science+&+Technology+

7.  Howto+&+Style+
8.  Music+
9.  News+&+Poli1cs+

Shot level Tag Localization (STL)

Accuracy of localization of the YouTube tags 
within the correct shots

Shot level Tag Suggestion and Localization 
(STSL)

Accuracy of localization at the shot level for 
both YouTube and suggested tags

STSL + WordNet expansion (STSL-WN)

Accuracy of STSL after WordNet expansion 
of the YouTube tags









Ongoing Works

• Use multiple semantic taxonomies for image/video 
annotation and tag refinement

- WordNet and ImageNet

- a folksonomy learned from user tags

• Define a unified model for image and tags based on an 
intermediate semantic representation (attributes?)



Thank you!


