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Standard computer vision paradigm
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• Q: What objects are in the image?
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Datasets drive computer vision progress
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ImageNet
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ImageNet: ILSVRC results
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• Result in ILSVRC (classification) over the years

MSRA 3.57
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The long tail
• A small number off generic objects/entities/labels 

appear very often while most others appear rarely 

• There are a few real-world scenarios in which we 
have access to 1M+ images uniformly belonging to 
a set of 1000+ classes
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vocabularies (infrequent labels) 
and a scenario where it is hard to 
collect ground truth data?  
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Automatic image annotation by 
exploiting image metadata and 

weak labels
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Motivation
• Can you guess what’s in the image?
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?
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• Let’s try to add more context…

Motivation

Tags:
flower 
petal 

closeup 
water

GPS
groups

…
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• In the context of images which share similar metadata 
it is easier to give the right answer

Motivation
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Approach
• For an image x ∈ X and neighborhood z ∈ Zx, we use 

a function f parameterized by w to predict labels  

‣ We compute hidden state representations for the 
image and its neighbors  

‣ Then we operate on the concatenation of these two 
representations to compute label scores 

• We demonstrate that our model can: 

‣ handle different types of image metadata  

‣ adapt to changing vocabularies
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Approach
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• (1) non-parametric step to build a neighborhood

[J.Johnson*, L.Ballan*, L.Fei-Fei - ICCV 2015]
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Approach
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• (2) deep neural network to blend visual information 
from the image and its neighbors

[J.Johnson*, L.Ballan*, L.Fei-Fei - ICCV 2015]
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Approach
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Wimage Wneighbors

• In this way the model uses features from both the 
image and its neighbors
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Results
• Multi-label image annotation results on the NUS-

WIDE dataset (~240K Flickr images)
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Results: ours vs CNN baseline
• Experiment 1: evaluates AP for each label of our 

model vs the visual-only CNN baseline
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Qualitative results
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Qualitative results
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Qualitative results
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Qualitative results
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Results: generalization
• Experiment 2: vocabulary generalization
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Results: generalization
• Experiment 3: metadata generalization
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Results using different 
types of metadata for 
training and testing

Probability that the k-th 
neighbor of an image has a 
label given that the image 
has the label
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Knowledge transfer for scene-
specific motion prediction
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Humans in crowded spaces
• When humans navigate a crowed space their 

motion is influenced by the scene and the other 
active agents 

• Stanford Campus Dataset: videos of various agents 
that navigate in a real world outdoor environment
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[A.Robicquet, A.Alahi, A.Sadeghian, B.Anenberg, J.Doherty, E.Wu, S.Savarese - arXiv 2016]
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Goal: motion (trajectory) prediction 
• Given a single picture and an observed agent, 

humans are able to predict the most likely future
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Motivation
• We believe this ability is mostly driven by two factors
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Motivation
• (1) the dynamics of previously observed targets
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Motivation
• (2) the semantic of the scene
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Challenges
• Our model should be able to exploit the interplay 

between scene semantics and agents 

• Data collection is hard and expensive 

• Q: how to scale to large dataset / new scenes?
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Approach
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training setinput scene

?

Knowledge Transfer

• This knowledge can be transferred to a new scene

[L.Ballan, F.Castaldo, A.Alahi, F.Palmieri, S.Savarese - arXiv 2016]
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Approach
• Given an input scene we build a navigation map M 

which collects the navigation statistics 

• For each patch in the map we collect: 

‣ Popularity score, Routing score, Histogram of 
Directions and Histogram of Speeds

30

Cyclist 

Pedestrian 

(a) Input scene (b) “Navigation map” (c) HoD and HoS 
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Prediction model
• Navigation Map: two qualitative examples
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(a) (b) (c) 

Column (a) visualizes the most common paths for both classes. Columns (b,c) show the 
corresponding popularity and routing maps. 
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Prediction model
• The target state variable is defined as Xk = (Pk,Vk)T  

‣ Pk = (Xk,Yk)T (position) and Vk = (Ωk,Θk)T (velocity) 

• The target interacts with the map M by exploiting 
the navigation values for the patch he is occupying 

• Given an initial condition X0, our goal is to generate 
a sequence of future states X1,…,XT, i.e. a path ΨT 
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ΨT
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• The dynamic process describing the target motion 
is defined by: 

‣ Pk+1 = Pk + (Ωk cosΘk,Ωk sinΘk)’ + wk    (constant velocity) 

‣ Vk+1 = Φ(Pk,Vk; M) 

• The learned expected values in M allows our model 
to generate non-linear behaviors 

•Φ(·) is defined in probabilistic terms by means of a 
Dynamic Bayesian Network (DBN)
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Prediction model
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Knowledge transfer

• Our data-driven approach uses scene similarity to 
transfer the functional properties to a new scene 

• Scene parsing: we use a “non-parametric” algorithm 
(based on SIFT+LLC, GIST and MRF inference)
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[J.Yang, B.Price, S.Cohen, M.Yang - CVPR 2014]

“The elements of the scene define a semantic context, and they might 
determine similar behaviors in scenes characterized by a similar context”
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Knowledge transfer
• Context Descriptors: a weighted concatenation of 

the global and local semantic context components 

‣ global context: vector of distances between classes 

‣ local context: encodes the spatial configuration of 
nearby patches at multiple levels

35

Local context
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Results: datasets
• UCLA-courtyard: 6 videos, 2 scenes, single-class 

(pedestrian), scene labeled with 8 semantic classes 

• Stanford-UAV: 21 videos,15 scenes, multi-class 
(pedestrian and cyclist), scene labeled with 10 
semantic classes 

• Evaluation metric: Modified Hausdorff Distance 
(MHD) to measure the pixel distance between 
ground-truth trajectories and predicted paths

36
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Results: path prediction
• Experiment 1: evaluates the ability of the proposed 

model to predict long-term trajectories

37

12 L. Ballan, F. Castaldo, A. Alahi, F. Palmieri, and S. Savarese

Table 1. (a) Path forecasting results on both datasets; we report the mean MHD error
of the closest path for a given final destination. (b) Shows the results of our method
on the Stanford-UAV dataset, obtained using di↵erent path generation strategies.

MHD error
UCLA-courtyard Stanford-UAV

LP 41.36±0.98 31.29±1.25

LPCA - 21.30±0.80

IOC [2] 14.47±0.77 14.02±1.13

SFM [14] - 12.10±0.60

Ours 10.32±0.51 8.44±0.72

(a) Path forecasting
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(b) Path generation (Ours)

destination, and they respectively refers to UCLA and Stanford-UAV dataset.
Our approach significantly outperforms the linear prediction baseline (LP), and
also IOC [2]. Additionally, we report results on the Stanford-UAV dataset using
a linear prediction baseline with collision avoidance (LPCA), and the social force
model [14] (referred as to SFM) which models both human-space and human-
human interactions. These results confirm the e↵ectiveness of the proposed ap-
proach even when it is compared to other methods which take advantage of the
interactions between agents.

In Table 1(b) we show some results in which we investigate di↵erent path
generation strategies. In other words, this is the strategy we use in our model to
predict the final path among the most likely ones (see Equation 10). We obtained
the best results when we privilege a path in which the final point is closest to the
goal, but significant improvements can be obtained also if we peak the path with
the highest popularity scores, or the mean of the top-10 most probable paths.

5.3 Knowledge Transfer

Here we evaluate the ability of our model to generalize and make predictions on
novel scenes. This generalization property is very important since it is hard and
expensive to collect large statistics of agents moving in di↵erent scenes.

(a) Original image (b) K=5 (c) K=10 (d) K=50

Fig. 7. (a) Input scene. (b,c,d) Show the “hallucinated” scene computed using our
patch matching approach. The images are formed by average patches obtained with an
increasing number of neighbors K. We varied the parameter K in the interval [1, 200].
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(a) MHD error for a given final destination (b) Path generation strategies (ours)
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Results: path prediction
• Qualitative examples on the UCLA-courtyard dataset 

(blue is ground-truth, cyan is LP, yellow is IOC, red is ours)

38
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Results: knowledge transfer

42

• Experiment 2: evaluates the ability of our model to 
generalize and make predictions on novel scenes

(b) Impact of training data(a) Path prediction

14 L. Ballan, F. Castaldo, A. Alahi, F. Palmieri, and S. Savarese

Ours: segm. [37] Ours: gtmask
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Fig. 9. This figure shows how the performance obtained with knowledge transfer is
influenced by the di↵erent parameters.

more non-linear behaviours (while a cyclist on the road has less route choices
and so the gain vs the simple linear prediction model is less pronounced).

Impact of the parameters. The results reported in Table 2 has been
obtained using 200 trajectories for training (the plot on the right shows how this
number influences performance). We also evaluate what is the gain that can be
achieved using ground-truth segmentation masks, instead of the scene parsing
obtained with [37]. Interestingly enough, Figure 9(a) shows that ground-truth
segmentation gives a very slight improvement. Then the overall robustness of
our framework is demonstrated by Figure 9(b,c). The main parameters of our
transfer procedure are w (i.e. the weight of the local and global context features)
and K, the number of nearest-neighbors used in the retrieval stage. Our best
results are obtained with w = 0.5 and K = 50.

6 Conclusions

In this paper we have presented an e↵ective general framework for trajectory
prediction. Our approach is able to model rich navigation patterns for generic
agents, by encoding prior knowledge about agent-scene functional interactions
of previously observed targets. Our results show significant improvement over

Table 2. (a) Knowledge transfer results on the Stanford-UAV dataset (per-class and
overall error). (b) How performance is influenced by the number of trajectories.

MHD error
Pedestrian Cyclist Overall

LP 34.07 26.15 31.29±1.25

IOC [2] 17.99 18.84 18.42±0.97

Ours 12.36 17.10 14.29±0.84

(a) Path forecasting
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• Qualitative examples: (1) path forecasting vs. (2) 
knowledge transfer
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Results: knowledge transfer

Knowledge Transfer for Scene-specific Motion Prediction 13

(a) Input scene (b) Popularity map (c) Routing map (d) Path prediction

Fig. 8. Qualitative results: the first row shows the results obtained in a standard path
forecasting setting, while the second row shows results obtained after knowledge trans-
fer. (a) Shows the input scenes; (b,c) show the navigation heatmaps (popularity and
routing scores, respectively); (c) demonstrates the predicted trajectory.

Some preliminary experiments on knowledge transfer have been presented
also in [2], but they limited their study to a few di↵erent scenes, while we con-
duct an extensive analysis on the Stanford-UAV dataset. By looking at the ex-
amples in Fig. 5, we see that many elements in the scene, such as roundabouts
or grass areas between road intersections, may often appear in similar configura-
tions. Those regularities across the scenes are detected by our semantic context
descriptors, and transferred by our retrieval and patch matching procedure.

Qualitative results. Figure 7 shows a qualitative example of an “halluci-
nated” scene, obtained substituting each patch of the new scene with the most
similar ones from the training set. Increasing the number of nearest-neighborsK,
we can observe more coherent structures. The actual knowledge transfer is done
by computing popularity score, routing score, HoD and HoF, for each trans-
ferred patch (as previously described in Section 4). In Figure 8, we also show a
qualitative example of the results obtained with or without knowledge transfer.

Quantitative results. Here we quantitatively evaluate the knowledge trans-
fer capability of our framework. Therefore we ignore the training trajectories and
functional properties encoded in the navigation map of the target scene, and we
make predictions using data transferred fromK nearest-neighbors retrieved from
the training set. Table 2 shows that our model after knowledge transfer performs
well. As expected, the predictions obtained starting from the transferred maps
are not good as the ones that can be obtained by training from the same scene
(i.e. 14.29±0.84 vs 8.44±0.72). However, we still outperform significantly both the
LP baseline and [2], demonstrating that knowledge transfer can be a key solution
for path forecasting on novel scenes. It is also interesting to note that our perfor-
mance is significantly better especially for the class pedestrian. We believe this
is mainly due to the fact that, in the Stanford-UAV dataset, pedestrians show

(1)

(2)
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• How the performance obtained with knowledge 
transfer is influenced by the different parameters?
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Results: impact of the parameters

(a) image parsing (b) context descriptors (c) KNN / retrieval
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Thanks!

Contact Info
lballan@cs.stanford.eu 
www.lambertoballan.net

C
ollaborators

mailto:lballan@cs.stanford.eu
http://www.lambertoballan.net


Lamberto Ballan: Sharing knowledge for large scale visual recognition 46

C
ollaborators

References
[1] J. Johnson*, L. Ballan*, L. Fei-Fei, “Love Thy Neighbors: Image 
Annotation by Exploiting Image Metadata”, ICCV 2015 (* equal contribution) 

[2] L. Ballan, F. Castaldo, A. Alahi, F. Palmieri, S. Savarese, “Knowledge 
Transfer for Scene-specific Motion Prediction”, ECCV 2016


