Sharing knowledge for large scale visual recognition

Lamberto Ballan Al Lab, Stanford University

Standard computer vision paradigm

• Q: What objects are in the image?

Test Data

▼ (ML) Algorithm

Datasets drive computer vision progress

ImageNet: ILSVRC results

Result in ILSVRC (classification) over the years

leam Name	Error (%)
MSRA	3.57
ReCeption	3.58
Trimps-Soushen	4.58
Qualcomm Research	4.87
VUNO	5.03
CIL	5.48
CUimage	5.86
MCG-ICT-CAS	6.31
HiVision	6.48

The long tail

- A small number off generic objects/entities/labels appear very often while most others appear rarely
- There are a few real-world scenarios in which we have access to 1M+ images uniformly belonging to a set of 1000+ classes

Q: How to scale up to very large vocabularies (infrequent labels) and a scenario where it is hard to collect ground truth data?

Automatic image annotation by exploiting image metadata and weak labels

• Can you guess what's in the image?

• Let's try to add more context...

Tags:

flower petal closeup water

GPS groups

...

 In the context of images which share similar metadata it is easier to give the right answer

- For an image $x \in X$ and neighborhood $z \in Z_x$, we use a function f parameterized by w to predict labels
 - We compute hidden state representations for the image and its neighbors
 - Then we operate on the concatenation of these two representations to compute label scores
- We demonstrate that our model can:
 - handle different types of image metadata
 - adapt to changing vocabularies

• (1) non-parametric step to build a neighborhood

[J.Johnson*, L.Ballan*, L.Fei-Fei - ICCV 2015]

• (2) *deep neural network* to blend visual information from the image and its neighbors

[J.Johnson*, L.Ballan*, L.Fei-Fei - ICCV 2015]

 In this way the model uses features from both the image and its neighbors

Results

 Multi-label image annotation results on the NUS-WIDE dataset (~240K Flickr images)

Method	mAP_L	mAP_I	Rec_L	$Prec_L$	Rec_I	$Prec_{I}$
Tag-only Model + linear SVM [37]	46.67	-	-	-	-	-
Graphical Model (all metadata) [37]	49.00	-	-	-	-	-
CNN + softmax [15]	-	-	31.22	31.68	59.52	47.82
CNN + ranking [15]	-	-	26.83	31.93	58.00	46.59
CNN + WARP [15]	-	-	35.60	31.65	60.49	48.59
Upper bound	100.00 ± 0.00	$100.00{\scriptstyle\pm0.00}$	$68.52{\pm}0.35$	60.68 ± 1.32	92.09 ± 0.10	$66.83{\scriptstyle \pm 0.12}$
Tag-only + logistic	43.88 ± 0.32	77.06 ± 0.14	47.52 ± 2.59	$46.83{\scriptstyle \pm 0.89}$	$71.34{\pm}0.16$	51.18 ± 0.16
CNN [27] + kNN-voting [36]	44.03 ± 0.26	73.72 ± 0.10	30.83 ± 0.37	44.41 ± 1.05	$68.06{\scriptstyle \pm 0.15}$	$49.49{\scriptstyle \pm 0.11}$
CNN [27] + logistic (visual-only)	45.78 ± 0.18	77.15 ± 0.11	43.12 ± 0.39	$40.90{\scriptstyle \pm 0.39}$	71.60 ± 0.19	51.56 ± 0.11
Image neighborhoods + CNN-voting	50.40 ± 0.23	$77.86{\scriptstyle \pm 0.15}$	$34.52{\pm}0.47$	$56.05{\scriptstyle \pm 1.47}$	$72.12{\scriptstyle \pm 0.21}$	$51.91{\scriptstyle \pm 0.20}$
Our model: tag neighbors	52.78 ± 0.34	80.34 ± 0.07	43.61 ± 0.47	46.98 ± 1.01	74.72 ± 0.16	$53.69{\scriptstyle \pm 0.13}$
Our model: tag neighbors + tag vector	61.88 ± 0.36	80.27 ± 0.08	57.30 ± 0.44	54.74 ± 0.63	75.10 ± 0.20	53.46 ± 0.09

Table 2: Results on NUS-WIDE. Precision and recall are measured using n = 3 labels per image. Metrics are reported both per-label (mAP_L) and per-image (mAP_I). We run on 5 splits of the data and report mean and standard deviation.

Results: ours vs CNN baseline

 Experiment 1: evaluates AP for each label of our model vs the visual-only CNN baseline

ecognition

Neighborhood

Neighborhood

Neighborhood

Results: generalization

Experiment 2: vocabulary generalization

Performance as we vary overlap between tag vocabularies used for training and testing: strong results even in the case of disjoint vocabularies

Results: generalization

• Experiment 3: metadata generalization

Test: Train:	Tags	Sets	Groups
Tags	52.78 ± 0.34	$47.12 {\pm} 0.35$	48.14 ± 0.33
Sets	$52.21 {\pm} 0.29$	$48.02{\scriptstyle\pm0.33}$	$48.49{\scriptstyle \pm 0.16}$
Groups	$50.32{\pm}0.28$	$47.82{\scriptstyle \pm 0.24}$	$48.87{\scriptstyle\pm0.22}$

Results using different types of metadata for training and testing

Probability that the k-th neighbor of an image has a label given that the image has the label

Knowledge transfer for scenespecific motion prediction

Humans in crowded spaces

- When humans navigate a crowed space their motion is influenced by the scene and the other active agents
- <u>Stanford Campus Dataset</u>: videos of various agents that navigate in a real world outdoor environment

[A.Robicquet, A.Alahi, A.Sadeghian, B.Anenberg, J.Doherty, E.Wu, S.Savarese - arXiv 2016]

Goal: motion (trajectory) prediction

• Given a single picture and an observed agent, humans are able to predict the most likely future

• We believe this ability is mostly driven by two factors

• (1) the dynamics of previously observed targets

• (2) the semantic of the scene

Challenges

- Our model should be able to exploit the interplay between scene semantics and agents
- Data collection is hard and expensive

• Q: how to scale to large dataset / new scenes?

• This knowledge can be transferred to a new scene

[L.Ballan, F.Castaldo, A.Alahi, F.Palmieri, S.Savarese - arXiv 2016]

- Given an input scene we build a navigation map M which collects the navigation statistics
- For each patch in the map we collect:
 - Popularity score, Routing score, Histogram of Directions and Histogram of Speeds

Prediction model

• Navigation Map: two qualitative examples

Column (a) visualizes the most common paths for both classes. Columns (b,c) show the corresponding popularity and routing maps.

Prediction model

- The target state variable is defined as $\mathbf{X}_k = (\mathbf{P}_k, \mathbf{V}_k)^T$
 - $\mathbf{P}_k = (X_k, Y_k)^T$ (position) and $\mathbf{V}_k = (\Omega_k, \Theta_k)^T$ (velocity)
- The target interacts with the map **M** by exploiting the navigation values for the patch he is occupying
- Given an initial condition X_0 , our goal is to generate a sequence of future states X_1, \ldots, X_T , i.e. a path Ψ_T

Prediction model

- The dynamic process describing the target motion is defined by:
 - $\mathbf{P}_{k+1} = \mathbf{P}_k + (\Omega_k \cos \Theta_k, \Omega_k \sin \Theta_k)' + \mathbf{w}_k$ (constant velocity)
 - $\mathbf{V}_{k+1} = \boldsymbol{\Phi}(\mathbf{P}_k, \mathbf{V}_k; \mathbf{M})$
- The learned expected values in M allows our model to generate non-linear behaviors
- $\Phi(\cdot)$ is defined in probabilistic terms by means of a Dynamic Bayesian Network (DBN)

Knowledge transfer

"The elements of the scene define a semantic context, and they might determine similar behaviors in scenes characterized by a similar context"

- Our data-driven approach uses scene similarity to transfer the functional properties to a new scene
- Scene parsing: we use a "non-parametric" algorithm (based on SIFT+LLC, GIST and MRF inference)

[J.Yang, B.Price, S.Cohen, M.Yang - CVPR 2014]

Knowledge transfer

- Context Descriptors: a weighted concatenation of the *global* and *local* semantic context components
 - *global context*: vector of distances between classes
 - *local context*: encodes the spatial configuration of nearby patches at multiple levels

Results: datasets

- UCLA-courtyard: 6 videos, 2 scenes, single-class (pedestrian), scene labeled with 8 semantic classes
- **Stanford-UAV**: 21 videos,15 scenes, multi-class (pedestrian and cyclist), scene labeled with 10 semantic classes
- Evaluation metric: *Modified Hausdorff Distance* (*MHD*) to measure the pixel distance between ground-truth trajectories and predicted paths

Results: path prediction

 Experiment 1: evaluates the ability of the proposed model to predict long-term trajectories

(a) MHD error for a given final destination

(b) Path generation strategies (ours)

Results: path prediction

• Qualitative examples on the UCLA-courtyard dataset (*blue* is ground-truth, *cyan* is LP, *yellow* is IOC, *red* is ours)

Results: knowledge transfer

• Experiment 2: evaluates the ability of our model to generalize and make predictions on novel scenes

(a) Path prediction

(b) Impact of training data

Results: knowledge transfer

• Qualitative examples: (1) path forecasting *vs.* (2) knowledge transfer

Results: impact of the parameters

• How the performance obtained with knowledge transfer is influenced by the different parameters?

Contact Info

lballan@cs.stanford.eu

www.lambertoballan.net

Thanks!

References

[1] J. Johnson*, **L. Ballan***, L. Fei-Fei, "Love Thy Neighbors: Image Annotation by Exploiting Image Metadata", ICCV 2015 (* equal contribution)

[2] **L. Ballan**, F. Castaldo, A. Alahi, F. Palmieri, S. Savarese, "Knowledge Transfer for Scene-specific Motion Prediction", ECCV 2016

